
Amplifier Transistors

EMITTER

EMITTER

MAXIMUM RATINGS

Rating	Symbol	MPS650 MPS750	MPS651 MPS751	Unit
Collector–Emitter Voltage	V _{CE}	40	60	Vdc
Collector-Base Voltage	V _{CB}	60	80	Vdc
Emitter-Base Voltage	V _{EB}	5.0		Vdc
Collector Current — Continuous	۱ _C	2.0		Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0		mW mW/°C
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C

Voltage and current are negative for PNP transistors

*ON Semiconductor Preferred Devices

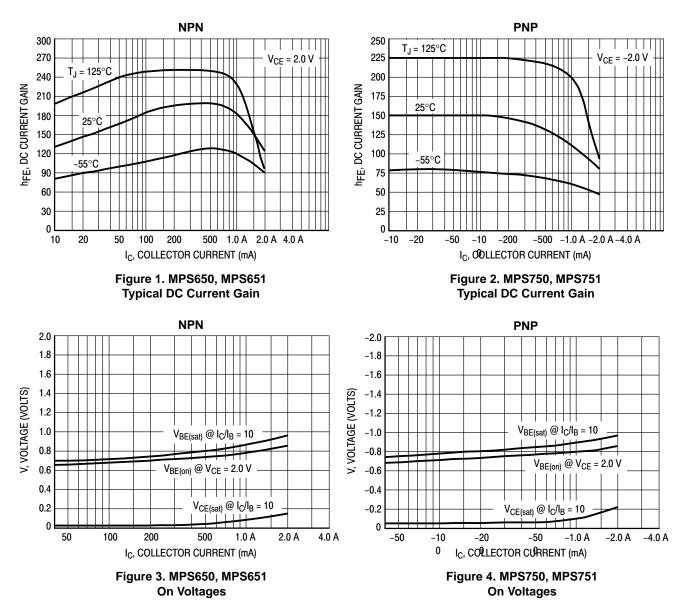
THERMAL CHARACTERISTICS

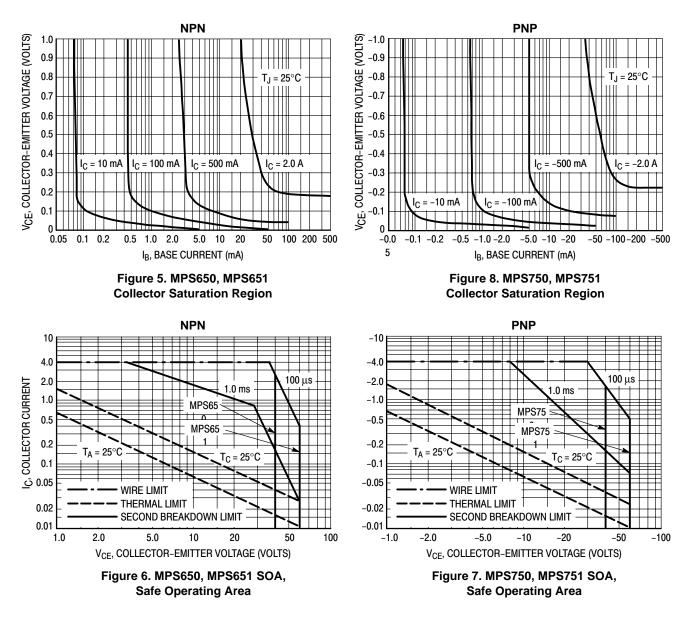
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	200	°C/W
Thermal Resistance, Junction to Case	R_{\thetaJC}	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic Symbol Min Max Unit **OFF CHARACTERISTICS** Collector–Emitter Breakdown Voltage⁽¹⁾ Vdc V_{(BR)CEO} $(I_{C} = 10 \text{ mAdc}, I_{B} = 0)$ MPS650, MPS750 40 ____ MPS651, MPS751 60 Collector-Base Breakdown Voltage V_{(BR)CBO} Vdc $(I_{C} = 100 \ \mu Adc, I_{E} = 0)$ MPS650, MPS750 60 ____ MPS651, MPS751 80 _

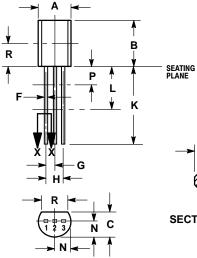
Emitter–Base Breakdown Voltage (I _C = 0, I _E = 10 μAdc)		V _{(BR)EBO}	5.0	_	Vdc	
	MPS650, MPS750 MPS651, MPS751	I _{CBO}		0.1 0.1	μAdc	
Emitter Cutoff Current ($V_{EB} = 4.0 \text{ V}, I_C = 0$)		I _{EBO}		0.1	μAdc	


1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle = 2.0%.


Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS ⁽¹⁾				
	h _{FE}	75 75 75 40	 	—
Collector–Emitter Saturation Voltage ($I_C = 2.0 \text{ A}, I_B = 200 \text{ mA}$) ($I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$)	V _{CE(sat)}		0.5 0.3	Vdc
Base–Emitter On Voltage ($I_C = 1.0 \text{ A}$, $V_{CE} = 2.0 \text{ V}$)	V _{BE(on)}	_	1.0	Vdc
Base–Emitter Saturation Voltage ($I_C = 1.0 \text{ A}$, $I_B = 100 \text{ mA}$)	V _{BE(sat)}		1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				


Current–Gain — Bandwidth Product⁽²⁾ 75 MHz \mathbf{f}_{T} ____ (I_C = 50 mAdc, V_{CE} = 5.0 Vdc, f = 100 MHz)

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-10 ISSUE AL

STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSIONS TAPPLYES BETWEEN P AND L. DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	

<u>Notes</u>

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and fersional injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.