NPN Silicon Epitaxial Planar Transistors

for general purpose, high voltage amplifier applications.

As complementary types the PNP transistors ST 2N5400 and ST 2N5401 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Base 3. Collector

TO-92 Plastic Package Weight approx. 0.19g

Absolute Maximum Ratings $(T_a = 25^{\circ}C)$

		Symbol	Value	Unit			
Collector Emitter Voltage	ST 2N5550	V _{CEO}	140	V			
	ST 2N5551	V_{CEO}	160	V			
Collector Base Voltage	ST 2N5550	V _{CBO}	160	V			
	ST 2N5551	V_{CBO}	180	V			
Emitter Base Voltage		V _{EBO}	6	V			
Collector Current		I _C	600	mA			
Power Dissipation		P _{tot}	625 ¹⁾	mW			
Junction Temperature		Tj	150	°C			
Storage Temperature Range		T _S	-55 to +150	°C			
1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case							

ST 2N5550 / 2N5551

Characteristics at T_{amb}=25 °C

		Symbol	Min.	Тур.	Max.	Unit		
DC Current Gain								
at V _{CE} =5V, I _C =1mA	ST 2N5550	h _{FE}	60	-	_	-		
	ST 2N5551	h _{FE}	80	-	-	-		
at V _{CE} =5V, I _C =10mA	ST 2N5550	h _{FE}	60	-	250	-		
	ST 2N5551	h _{FE}	80	-	250	-		
at V_{CE} =5V, I_{C} =50mA	ST 2N5550	h _{FE}	20	-	-	-		
	ST 2N5551	h _{FE}	30	-	-	-		
Collector Emitter Breakdown Voltage								
at I _C =1mA	ST 2N5550	$V_{(BR)CEO}$	140	-	-	V		
	ST 2N5551	$V_{(BR)CEO}$	160	-	-	V		
Collector Base Breakdown Voltage								
at I _C =100μA	ST 2N5550	$V_{(BR)CBO}$	160	-	-	V		
	ST 2N5551	$V_{(BR)CBO}$	180	-	-	V		
Emitter Base Breakdown Voltage								
at I _E =10μA		$V_{(BR)EBO}$	6	-	-	V		
Collector Cutoff Current								
at V _{CB} =100V	ST 2N5550	I _{CBO}	-	-	100	nA		
at V _{CB} =120V	ST 2N5551	I _{CBO}	-	-	50	nA		
Emitter Cutoff Current								
at V _{EB} =4V		I _{EBO}	-	-	50	nA		
Collector Saturation Voltage								
at I _C =10mA, I _B =1mA		$V_{CE\;sat}$	-	-	0.15	V		
at I _C =50mA, I _B =5mA	ST 2N5550	V_{CEsat}	-	-	0.25	V		
	ST 2N5551	V_{CEsat}	-	-	0.2	V		
Base Saturation Voltage								
at I _C =10mA, I _B =1mA		$V_{BE\;sat}$	-	-	1	V		
at I _C =50mA, I _B =5mA	ST 2N5550	$V_{BE\;sat}$	-	-	1.2	V		
	ST 2N5551	$V_{BE\;sat}$	-	-	1	V		
Gain Bandwidth Product								
at V _{CE} =10V, I _C =10mA, f=100MHz		f_T	100	-	300	MHz		
Collector Base Capacitance								
at V _{CB} =10V, f=1MHz		C_{CBO}	-	-	6	pF		
Noise Figure								
at V_{CE} =5V, I_C =200 μ A, R_G =2k Ω ,	ST 2N5550	NF	-	-	10	dB		
f=30H _z 15kH _z	ST 2N5551	NF	-	-	8	dB		
Thermal Resistance Junction to Ambient		R_{thA}	-	-	200 ¹⁾	K/W		
1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.								

SEMTECH ELECTRONICS LTD.

(Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

