N-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

| $\mathrm{BV}_{\mathrm{DSS}} /$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{BV}_{\mathrm{DGS}}$ |

Features

- Low threshold - 2.0V max.
- High input impedance
- Low input capacitance - 50pF typical
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage
- Complementary N - and P-channel devices

Low Threshold DMOS Technology

These low threshold enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.
Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Option

Thermal Characteristics

Package	\mathbf{I}_{D} (continuous) *	I_{D} (pulsed)	Power Dissipation $@ \mathbf{T}_{\mathbf{C}}=\mathbf{2 5} \mathbf{C}$	θ_{jc} ${ }^{\circ} \mathbf{C} / \mathbf{W}$	θ_{ja} ${ }^{\circ} \mathbf{C} / \mathbf{W}$	$\mathrm{I}_{\mathrm{DR}}{ }^{*}$	$\mathbf{I}_{\mathrm{DRM}}$
$\mathrm{TO}-92$	350 mA	2.0 A	1.0 W	125	170	350 mA	2.0 A

${ }^{*} I_{D}$ (continuous) is limited by max rated T_{j}.

Electrical Characteristics (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter		Min	Typ	Max	Unit	Conditions
$B V_{\text {DSS }}$	Drain-to-Source Breakdown Voltage	TN0110	100			V	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
		TN0106	60				
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage		0.6		2.0	V	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$
$\Delta \mathrm{V}_{\text {GS(th) }}$	Change in $\mathrm{V}_{\mathrm{GS} \text { (th) }}$ with Temperature			-3.2	-5.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate Body Leakage				100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
					500		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.8 \text { Max Rating } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{D} \text { (ON) }}$	ON-State Drain Current		0.75	1.4		A	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
			2.0	3.4			$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static Drain-to-Source ON-State Resistance			2.0	4.5	Ω	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}$
				1.6	3.0		$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$
$\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with Temperature			0.6	1.1	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
G_{FS}	Forward Transconductance		225	400		mซ	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input Capacitance			50	60	pF	$\begin{aligned} & V_{G S}=0 V, V_{D S}=25 V \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OSS }}$	Common Source Output Capacitance			25	35		
$\mathrm{C}_{\mathrm{RSS}}$	Reverse Transfer Capacitance			4.0	8.0		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON Delay Time			2.0	5.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise Time			3.0	5.0		
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-OFF Delay Time			6.0	7.0		
t_{f}	Fall Time			3.0	6.0		
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage Drop			1.0	1.5	V	$\mathrm{I}_{\mathrm{SD}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
t_{rr}	Reverse Recovery Time			400		ns	$\mathrm{I}_{\mathrm{SD}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

PULSE GENERATOR

Typical Performance Curves

Output Characteristics

Transconductance vs. Drain Current

Maximum Rated Safe Operating Area

Saturation Characteristics

Power Dissipation vs. Case Temperature

Thermal Response Characteristics

Typical Performance Curves

