HiPerFET ${ }^{\text {m }}$ Power MOSFET

N-Channel Enhancement Mode
High dv/dt, Low t_{rr}, HDMOS $^{\text {TM }}$ Family

IXFH/IXFM 11N80 IXFH/IXFM 13N80 IXFH/IXFM 14N80 IXFH/IXFM 15N80

Symbol	Test Conditions	Maximum Ratings		
$\mathrm{V}_{\text {Dss }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		800	V
$V_{\text {DGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$		800	V
$\mathrm{V}_{\text {Gs }}$	Continuous		± 20	V
$\mathrm{V}_{\text {GSM }}$	Transient		± 30	V
$\mathrm{I}_{\mathrm{D} 2}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	11 N80	O 11	A
		13 N 80	- 13	A
		14N80	- 14	A
		15N80	O 15	A
I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, pulse width limited by T_{JM}	11 N80	30	A
		13 N 80	52	A
		14N80	- 56	A
		15N80	80	A
$\mathrm{I}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	11 N80	- 11	A
		13N80	13	A
		14 N 80	- 14	A
		15N80	- 15	A
$\mathrm{E}_{\text {AR }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		30	mJ
dv/dt	$\mathrm{I}_{\mathrm{s}} \leq \mathrm{I}_{\mathrm{DM}}$, di/dt $\leq 100 \mathrm{~A} / \mathrm{\mu s}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\text {DSS }}$,	5		V / ns
	$\mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega$			
P_{D}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		300	w
T_{J}		$-55 \ldots+150$150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$				${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 ... +150		${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque	1.13/10 Nm/lb.in.		
Weight		TO-204 $=18 \mathrm{~g}, \mathrm{TO}-247=6 \mathrm{~g}$		
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300		${ }^{\circ} \mathrm{C}$

Symbol $\begin{gathered}\text { Test Conditions } \\ \left(T_{J}=25^{\circ} \mathrm{C} \text {, unless otherwise specified) }\right.\end{gathered}$			Characteristic Values			
		($T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified)	Min.	Typ.	Max.	
$\mathrm{V}_{\text {Dss }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~mA}$		800			V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$		2.0		4.5	V
$\mathrm{I}_{\text {Gss }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DS}}=0$				± 100	nA
$\mathrm{I}_{\text {oss }}$	$\mathrm{V}_{\mathrm{DS}}=0.8 \mathrm{~V}$ DSs	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			1	mA
$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$	11 N80			0.95	Ω
		13 N 80			0.80	Ω
		14N80			0.70	Ω
		15N80			0.60	Ω
	Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty	$\delta \leq 2 \%$				

$\mathbf{V}_{\mathrm{DSs}}$	$\mathbf{I}_{\mathrm{D} 25}$	$\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$	\mathbf{t}_{r}
800 V	11 A	0.95Ω	250 ns
800 V	13 A	0.80Ω	250 ns
800 V	14 A	0.70Ω	250 ns
800 V	15 A	0.60Ω	250 ns

Features

- International standard packages
- Low $\mathrm{R}_{\mathrm{DS}(o n)} \mathrm{HDMOS}^{\text {TM }}$ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Synchronous rectification
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Temperature and lighting controls
- Low voltage relays

Advantages

- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- Space savings
- High power density

Symbol
Test Conditions
Characteristic Values
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)
Min. ${ }^{\text {Typ. }}$ Max.

Source-Drain Diode
Characteristic Values
($T_{j}=25^{\circ} \mathrm{C}$, unless otherwise specified)
Symbol Test Conditions

TO-247 AD (IXFH) Outline

TO-204 AA (IXFM) Outline

IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:
$4,835,5924,881,106 \quad 5,017,508 \quad 5,049,961 \quad 5,187,117 \quad 5,486,715$
$4,850,072 \quad 4,931,844 \quad 5,034,796 \quad 5,063,307 \quad 5,237,4815,381,025$

Fig.1. Output Characteristics

Fig. 3. Rds(on) vs. Drain Current

Fig. 5. Drain Current vs. Case Temperature

Fig. 2. Input Admittance

Fig. 4. Temperature Dependence of Drain to Source Resistance

Tj - Degrees C
Fig. 6. Temperature Dependence of Breakdown Voltage and Threshold Voltage

IXFH 11/13/14/15 N80 IXFM 11/13/14/15 N80

Fig. 7. Gate Charge

Fig. 9. Capacitance Curves

Fig. 8. Forward Bias Safe Operating Area

Fig. 10. Source Current vs. Source to Drain Voltage

Fig. 11. Transient Thermal Impedance

