N-Channel Depletion-Mode Vertical DMOS FETs

Ordering Information

BV _{DSX} /	R _{DS(ON)} (max)	I _{DSS} (min)	Order Number / Package				
BV _{DGX}			TO-92	TO-220	TO-243AA*		
350V	25	150mA	DN2535N3	DN2535N5	_		
400V	25	150mA	DN2540N3	DN2540N5	DN2540N8		

^{*} Same as SOT-89. Product shipped on 2000 piece carrier tape reels.

Features

- ☐ High input impedance
- □ Low input capacitance
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

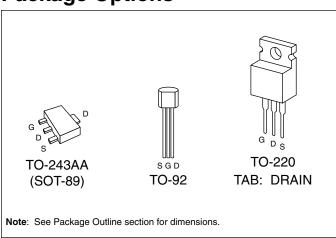
- □ Normally-on switches
- Solid state relays
- ☐ Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- ☐ Telecom

Absolute Maximum Ratings

Drain-to-Source Voltage	BV_{DSX}
Drain-to-Gate Voltage	BV_{DGX}
Gate-to-Source Voltage	± 20V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C

^{*} Distance of 1.6 mm from case for 10 seconds.

Product marking for TO-243AA: DN5D


Where = 2-week alpha date code

Advanced DMOS Technology

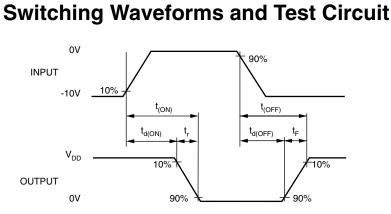
These low threshold depletion-mode (normally-on) transistors utilize an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

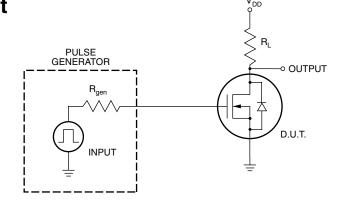
Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Options

Thermal Characteristics

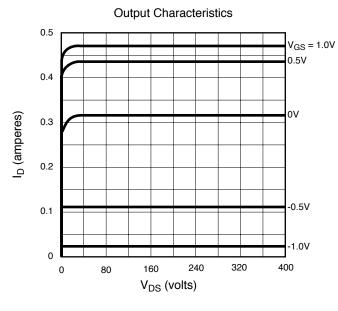
Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _C = 25°C	$ heta_{ extsf{jc}}$ ° C/W	θ _{ja} °C/W	I _{DR} *	I _{DRM}
TO-92	120mA	500mA	1.0W	125	170	120mA	500mA
TO-220	500mA	500mA	15.0W	8.3	70	500mA	500mA
TO-243AA	170mA	500mA	1.6W (T _A = 25°) [†]	15	78 [†]	170mA	500mA

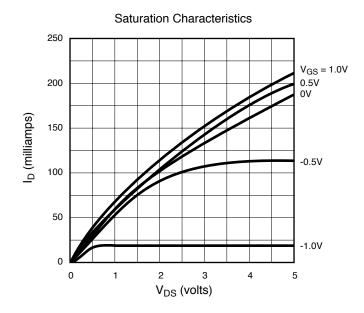

 $^{^*}$ I_D (continuous) is limited by max rated T_j.

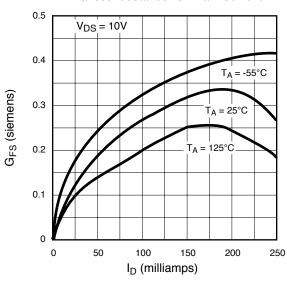

Electrical Characteristics (@ 25°C unless otherwise specified)

Symbol	Parameter		Min	Тур	Max	Unit	Conditions
BV _{DSX}	Drain-to-Source	DN2540	400			V	$V_{GS} = -5V, I_{D} = 100 \mu A$
	Breakdown Voltage	DN2535	350				
V _{GS(OFF)}	Gate-to-Source OFF Voltage		-1.5		-3.5	V	$V_{DS} = 25V, I_{D} = 10\mu A$
$\Delta V_{\rm GS(OFF)}$	Change in V _{GS(OFF)} with Temperature				4.5	mV/°C	$V_{DS} = 25V, I_{D} = 10\mu A$
I _{GSS}	Gate Body Leakage Current				100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
I _{D(OFF)}	I _{D(OFF)} Drain-to-Source Leakage Current				10	μΑ	$V_{GS} = -10V$, $V_{DS} = Max$ Rating
					1	mA	$V_{GS} = -10V$, $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C
I _{DSS}	Saturated Drain-to-Source Current		150			mA	$V_{GS} = 0V, V_{DS} = 25V$
R _{DS(ON)}	Static Drain-to-Source ON-State Resistance			17	25	Ω	$V_{GS} = 0V, I_{D} = 120mA$
R _{DS(ON)}	Change in R _{DS(ON)} with Temperature				1.1	%/°C	$V_{GS} = 0V, I_{D} = 120mA$
G _{FS}	Forward Transconductance			325		m℧	I _D = 100mA, V _{DS} = 10V
C _{ISS}	Input Capacitance			200	300		$V_{GS} = -10V, V_{DS} = 25V$
C _{OSS}	Common Source Output Capacitance			12	30	pF	f = 1 MHz
C _{RSS}	Reverse Transfer Capacitance			1	5		
t _{d(ON)}	Turn-ON Delay Time				10		$V_{DD} = 25V$,
t _r	Rise Time				15	ns	I _D = 150mA,
t _{d(OFF)}	Turn-OFF Delay Time				15		$R_{GEN} = 25\Omega$
t _f	Fall Time				20		
V _{SD}	Diode Forward Voltage Drop				1.8	V	$V_{GS} = -10V, I_{SD} = 120mA$
t _{rr}	Reverse Recovery Time			800		ns	$V_{GS} = -10V, I_{SD} = 1A$

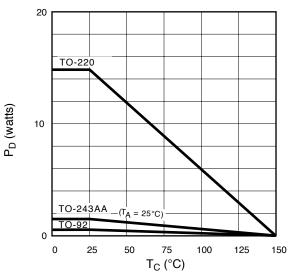
Notes:

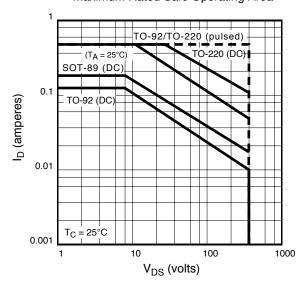

- 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300~s pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.

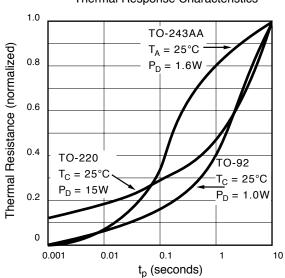


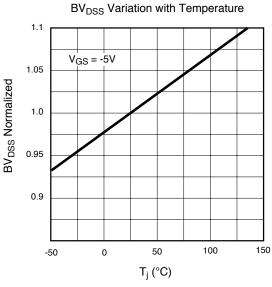

 $^{^{\}dagger}$ Mounted on FR5 board, 25mm x 25mm x 1.57mm. Significant P_{D} increase possible on ceramic substrate. $T_{A} = 25^{\circ}$ C

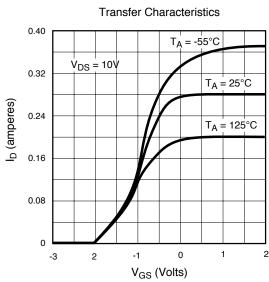
Typical Performance Curves

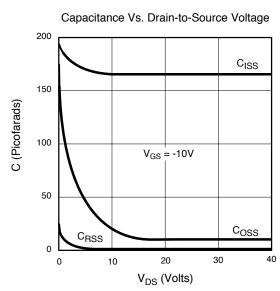


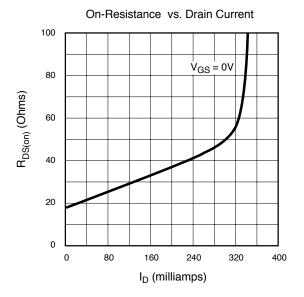

Transconductance vs. Drain Current

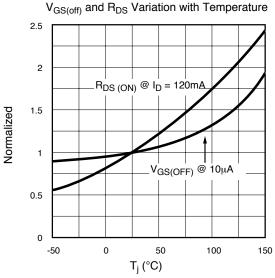

Power Dissipation vs. Temperature

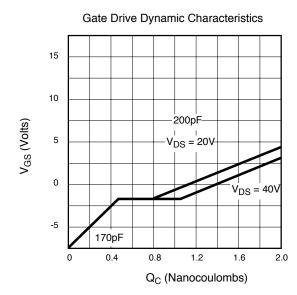

Maximum Rated Safe Operating Area




Thermal Response Characteristics




Typical Performance Curves



07/20/04