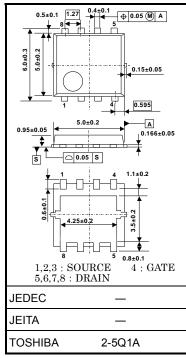
TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII)

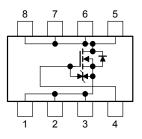
TPCA8016-H

High-Speed and High-Efficiency DC-DC Converters Notebook PC Applications **Portable Equipment Applications**


- Small footprint due to small and thin package •
- High-speed switching
- Small gate charge: Qsw = 6.6 nC (typ.) •
- Low drain-source ON resistance: R_{DS} (ON) = 16 m Ω (typ.) .
- High forward transfer admittance: $|Y_{fs}| = 40 \text{ S}$ (typ.) .
- Low leakage current: $I_{DSS} = 10 \ \mu A (max) (V_{DS} = 60 \ V)$
- Enhancement mode: V_{th} = 1.1 to 2.3 V (V_{DS} = 10 V, I_D = 1 mA)

Maximum Ratings (Ta = 25°C)

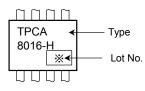
Characte	ristics	Symbol	Rating	Unit	
Drain-source voltage	ource voltage		60	V	
Drain-gate voltage (R	R _{GS} = 20 kΩ)	V _{DGR}	60	V	
Gate-source voltage		V _{GSS}	±20	V	
Drain current	DC (Note 1)	۱ _D	25	Α	
Diamounent	Pulsed (Note 1)	I _{DP}	75	A	
Drain power dissipati	on (Tc = 25°C)	PD	45	W	
Drain power dissipati	on (t = 10 s) (Note 2a)	PD	2.8	W	
Drain power dissipation (t = 10 s) (Note 2b)		PD	1.6	W	
Single pulse avalanche energy (Note 3)		E _{AS}	45	mJ	
Avalanche current		I _{AR}	25	А	
Repetitive avalanche (1	energy 「c=25°C) (Note 4)	E _{AR}	2.7	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	Storage temperature range		-55 to 150	°C	


Note: For Notes 1to 5, refer to the next page.

This transistor is an electrostatic-sensitive device. Handle with caution.

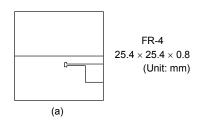
Weight: 0.080 g (typ.)

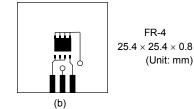
Circuit Configuration



Unit: mm

Thermal Characteristics


Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case (Tc=25°C)	R _{th (ch-c)}	2.78	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2a)	R _{th (ch-a)}	44.6	°C/W
Thermal resistance, channel to ambient $(t = 10 \text{ s})$ (Note 2b)	R _{th (ch-a)}	78.1	°C/W


Marking (Note 5)

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (a)

(b) Device mounted on a glass-epoxy board (b)

Note 3: $V_{DD} = 24 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.1 mH, R_G = 25 Ω , I_{AR} = 25 A

Note 4: Repetitive rating: pulse width limited by max channel temperature

Note 5: * Weekly code: (Three digits)

Week of manufacture

_(01 for the first week of the year, continuing up to 52 or 53)

Year of manufacture
(The last digit of the year)

Electrical Characteristics (Ta = 25°C)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 16 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	_	—	±10	μA
Drain cut-OFF cu	rrent	I _{DSS}	$V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	_	10	μA
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	60	_	_	v
Dialit-Source brea	akuowii voltage	V (BR) DSX			_	v	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$	1.1	_	2.3	V
	rogiatanag	Dec (cu)	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	_	16	21	
Drain-source ON	resistance	RDS (ON)	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mΩ		
Forward transfer	admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 13 \text{ A}$	20 40 —		S	
Input capacitance	,	C _{iss}		_	1375	_	
Reverse transfer capacitance		C _{rss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	70	_	pF
Output capacitance		C _{oss}			340		
		Rg			1.0		Ω
$\begin{array}{c c} \mbox{Drain-source ON resistance} & R_{DS} (0N) & \hline V_{GS} = 10 \\ \hline V_{GS} = 4. \\ \hline V_{OS} = 4. \\ \hline V_{DS} = 10 \\ \hline V$	Rise time	tr	10 V 🗖 🛛 lp = 13 A		4		
	$V_{GS} \stackrel{10}{_{0}} V \prod I_{D} = 13 \text{ A}$		10	_			
	Fall time	t _f	R 0 1 44.7 0 R 0 1 44.7 0 =2.35 [↓ 1 1 0 0		3	_	- ns
	Turn-OFF time	t _{off}	$V_{DD}\simeq 30~V \label{eq:VDD}$ Duty \leq 1%, $t_W=10~\mu s$		19		
Total gate charge		0	$V_{DD}\simeq 48~V,~V_{GS}=10~V,~I_D=25~A$		22		
		Qg	$V_{DD}\simeq 48~V,~V_{GS}=5~V,~I_D=25~A$	5A 12		_	
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 48$ V, $V_{GS} = 10$ V, $I_D = 25$ A	_	4.6	_	nC
Gate-drain ("miller") charge		Q _{gd}		_	4.2	_	
Gate switch charg	је	Q _{SW}		_	6.6	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Drain reverse current	Pulse	(Note 1)	I _{DRP}	_	_	_	75	А
Forward voltage (diode)			V _{DSF}	$I_{DR}=25~\text{A},~V_{GS}=0~\text{V}$	_		-1.2	V

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.