

STS7PF30L

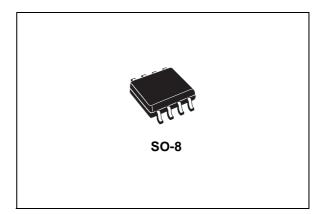
P-CHANNEL 30V - 0.16Ω - 7A - SO-8 STripFET™ II Power MOSFET

General features

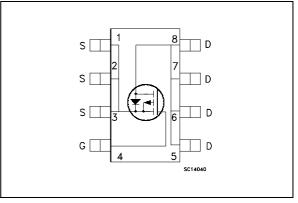
v.DataSheet4L	Type .com	V _{DSS}	R _{DS(on)}	Ι _D
	STS7PF30L	30V	<0.021Ω	7A

- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

Description


This Power MOSFET is the latest development of STMicroelectronics' unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing densisty for low on-resistance, rugged avalanche characteristics and less critical alignment steps, therefore a remarkable manufacturing reproducibility.

Applications


- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT.
- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT

Order Codes

Sales Type	Marking	Package	Packaging
STS7PF30L	S7PF30L	SO-8	TAPE & REEL

Internal schematic diagram

1 Electrical ratings

Symbol	Parameter	Value	Unit				
V _{DS}	Drain-Source Voltage (V _{GS} = 0)	30	V				
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20k\Omega$)	30	V				
V _{GS}	Gate-Source Voltage	± 20	V				
com I _D	Drain Current (continuous) at T _C = 25°C	7	А				
۱ _D	Drain Current (continuous) at T _C = 100°C	4.4	А				
I _{DM} Note 1	Drain Current (pulsed)	28	А				
P _{TOT}	Total Dissipation at $T_{C} = 25^{\circ}C$	2.5	W				

Table 1. Absolute maximum ratings

Table 2. Thermal data

Rthj-amb <i>Note</i> 2	Thermal Resistance Junction-ambient	50	°C/W
T _j	Operating Junction Temperature	150	ာ
T _{stg}	Storage Temperature Range	-55 to 150	သိ

Electrical characteristics 2

(T_J = 25 °C unless otherwise specified)

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS} Drain-Source Breakdown Voltage		I _D = 250μA, V _{GS} = 0	30			V
l.com I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, V _{DS} = Max Rating, T _c =125°C			1 10	μΑ μΑ
I _{GSS}	Gate Body Leakage Current (V _{DS} = 0)	$V_{DS} = \pm 16V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	1.6	2.5	V
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 10 V, I _D = 3.5A V _{GS} = 4.5 V, I _D = 3.5A	0.011 0.016	0.016 0.022	0.021 0.028	Ω Ω

Table 3. **On/off states**

Table 4. Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} Note 3	Forward Transconductance	V _{DS} = 20V _, I _D = 3.5A		16		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1MHz, V _{GS} =0		2600 523 174		pF pF pF
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 15V, I _D = 7A, V _{GS} = 4.5V		28 8.75 12.35	7	nC nC nC

Table 5. Switching times

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{DD} = 15V, I_D = 3.5A$ $R_G = 4.7\Omega, V_{GS} = 4.5V,$ (see Figure 13)		68 54		ns ns
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$V_{DD} = 15V, I_D = 3.5A$ $R_G = 4.7\Omega, V_{GS} = 4.5V,$ (see Figure 13)		65 23		ns ns

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} Note 1	Source-Drain Current Source-Drain Current (pulsed)				7 28	A A
V _{SD}	Forward On Voltage	I _{SD} = 7A, V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} = 7A, di/dt = 100A/μs V _{DD} = 15V, Τ _j = 150°C (see Figure 15)		40 46 2.3		ns nC A

Table 6. Source-Drain Diode

w.DataSheet4U.com

(1) Pulse with limited by safe operating area

(2) When mounted on 1inch² FR-4 board (t \leq 10µs)

(3) Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Note: For the P-CHANNEL MOSFET the polarity of voltages and current have to be reversed

094480

 $Z_{th} = k R_{thJ-c}$

 $10^{-1} t_{P}(s)$

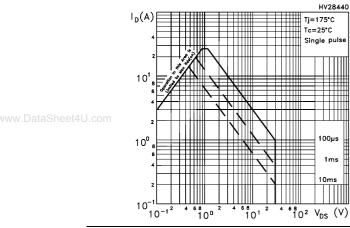
 $\delta = t_{\rm p}/\tau$

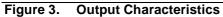
10⁻²

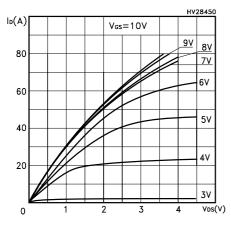
Electrical characteristics (curves) 2.1

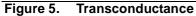
Figure 1. Safe Operating Area

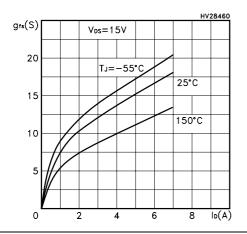
28010

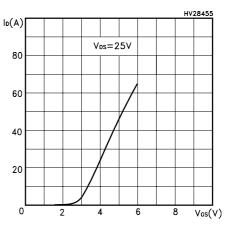

d=0.5


к

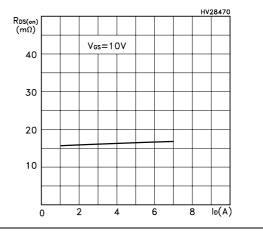

10

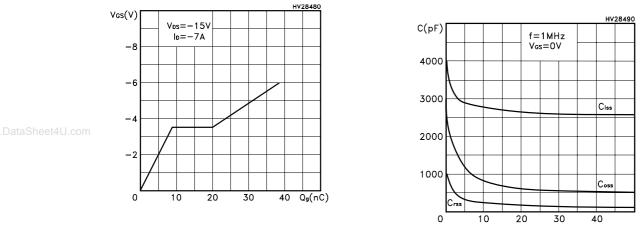

 10^{-2}


10⁻⁵



10⁻⁴ **Transfer Characteristics** Figure 4.


0.05 0.02


10. 01

 10^{-3}

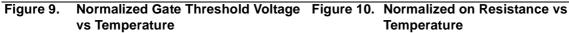

SINGLE PULSE

Figure 6. Static Drain-Source on Resistance

Figure 7. Gate Charge vs Gate-Source Voltage Figure 8. Capacitance Variations

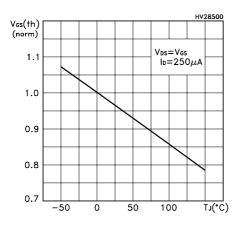
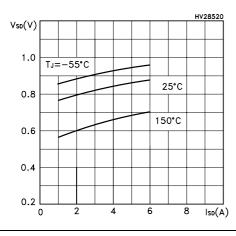
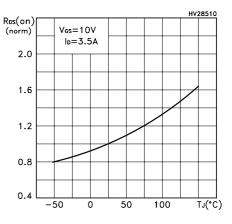
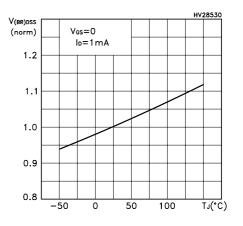
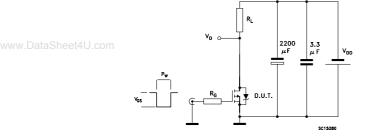



Figure 11. Source-Drain Diode Forward Characteristics


Figure 12. Normalized Breakdown Voltage vs Temperature

3 Test Circuits

Figure 13. Switching Times Test Circuit For Resistive Load

Figure 14. Gate Charge Test Circuit

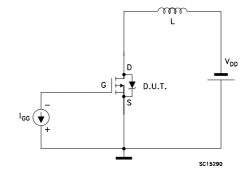
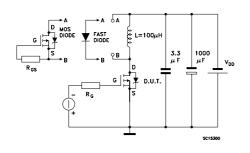
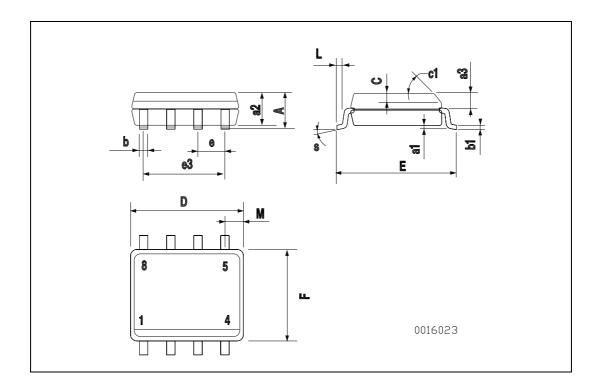



Figure 15. Test Circuit For Inductive Load Switching and Diode Recovery Times

4 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com


ww.DataSheet4U.com

٦

Г

SO-8 MECHANICAL DATA						
DIM.		mm.				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45 ((typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S		1	8 (n	nax.)	•	

5 Revision History

Date	Revision	Changes
13-Dec-2003	1	First Issue
25-Jun-2004	2	Preliminary Data
18-Jan-2005	3	Modified value on table 5
29-Sep-2005	4	Complete version
09-Nov-2005	5	New template

ww.DataSheet4U.com

/ww.DataSheet4U.com

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

11/11