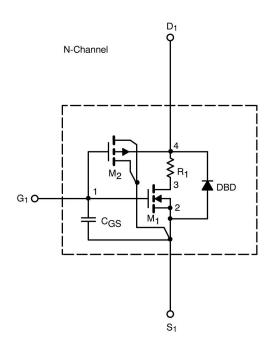
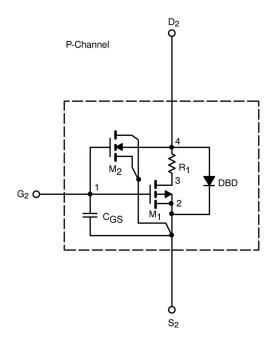


N- and P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

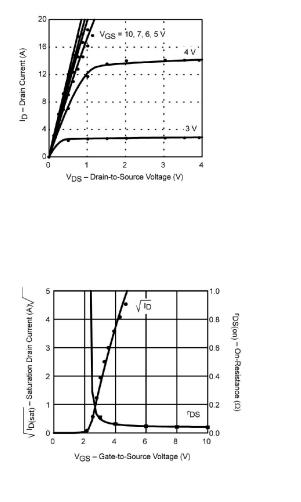
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

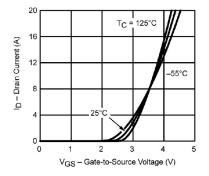
SUBCIRCUIT MODEL SCHEMATIC

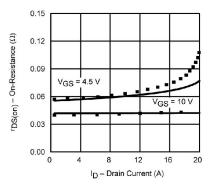
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

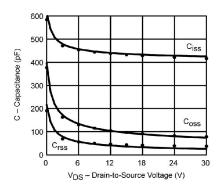
SPICE Device Model Si4532ADY Vishay Siliconix

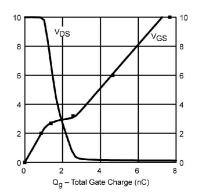
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)						
Parameter	Symbol	Test Conditions		Simulated Data	Measured Data	Unit
Static	•			•		
Gate Threshold Voltage	V	$V_{DS}=V_{GS},\ I_D=250\ \mu A$	N-Ch	1.8		v
	V _{GS(th)}	$V_{DS}=~V_{GS},~I_{D}=-250~\mu A$	P-Ch	2.2		
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} = 10 \text{ V}$	N-Ch	110		A
		$V_{\text{DS}} \leq -5 \text{ V}, V_{\text{GS}} = -10 \text{ V}$	P-Ch	62		
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS}=10~V,~I_{D}=4.9~A$	N-Ch	0.042	0.044	Ω
		$V_{GS} = -10 \ V, \ I_D = -3.9 \ A$	P-Ch	0.071	0.062	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 4.1 \text{ A}$	N-Ch	0.057	0.062	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -3 \text{ A}$	P-Ch	0.120	0.105	
Forward Transconductance ^a	g fs	$V_{DS} = 15 \text{ V}, I_D = 4.9 \text{ A}$	N-Ch	9.2	11	S
		$V_{DS} = -15 \text{ V}, \text{ I}_{D} = -2.5 \text{ A}$	P-Ch	5	5	
Diode Forward Voltage ^a		$I_{S} = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$	N-Ch	0.70	0.80	V
	V _{SD}	$I_{\rm S} = -1.7$ A, $V_{\rm GS} = 0$ V	P-Ch	-0.80	-0.82	
Dynamic ^b						
Total Gate Charge	Qg		N-Ch	7.4	8	Nc
		N-Channel V_{DS} = 10 V, V_{GS} = 10 V, I_D = 4.9 A P-Channel V_{DS} = -10 V, V_{GS} = -10 V, I_D = -3.9 A	P-Ch	9.6	10	
Gate-Source Charge	Q _{gs}		N-Ch	1.4	1.4	
			P-Ch	2	2	
Gate-Drain Charge	Q_{gd}		N-Ch	1.2	1.2	
			P-Ch	1.9	1.9	
Turn-On Delay Time	t _{d(on)}		N-Ch	8	12	
			P-Ch	12	8	
Rise Time	t _r	N-Channel $V_{DD} = 10 V, R_I = 10 \Omega$	ΩΩ N-Ch 10 10	10		
		$I_D \cong 1 \text{ A}, V_{\text{GEN}} = 10 \text{ V}, \text{R}_{\text{G}} = 6 \Omega$	P-Ch	14	9	Ns
Turn-Off Delay Time	$t_{d(off)}$	$\label{eq:VDD} \begin{split} V_{DD} &= -10 \text{ V}, $	N-Ch	13	23	
			P-Ch	16	21	
Fall Time	t _f		N-Ch	17	8	
	rt.		P-Ch	22	10	
Source-Drain Reverse Recovery Time	t _{rr}	$I_{S} = 1.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	N-Ch	24	25	
	۲r	$I_{S} = -1.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	P-Ch	30	27	

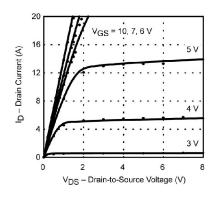

Notes a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2. b. Guaranteed by design, not subject to production testing.

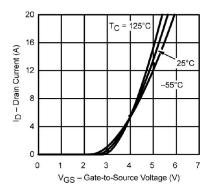


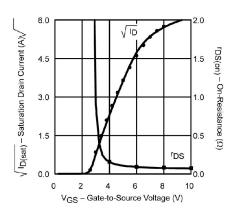

SPICE Device Model Si4532ADY Vishay Siliconix

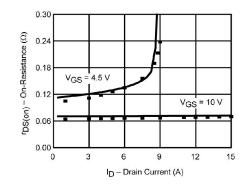

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

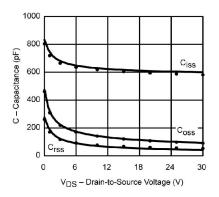

N-Channel MOSFET

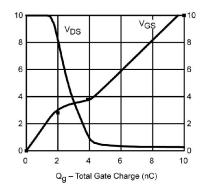



Note: Dots and squares represent measured data.


SPICE Device Model Si4532ADY Vishay Siliconix




P-Channel MOSFET



Note: Dots and squares represent measured data.