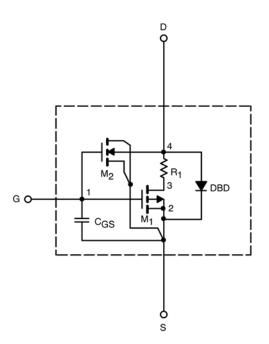


P-Channel 12-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

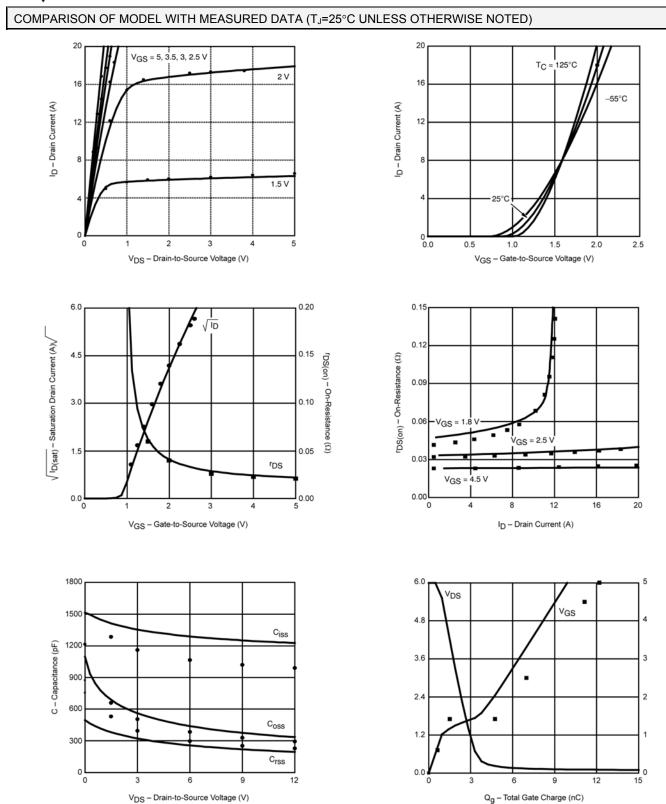
DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.


Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			1	<u> </u>	
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.70		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \leq -5$ V, V_{GS} = -4.5 V	116		А
Drain-Source On-State Resistance ^a	۲ _{DS(on)}	V_{GS} = -4.5 V, I _D = -5.3 A	0.023	0.025	Ω
		V_{GS} = -2.5 V, I _D = -4.6 A	0.034	0.033	
		$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -2 \text{ A}$	0.049	0.046	
Forward Transconductance ^a	g _{fs}	V_{DS} = -5 V, I _D = -5.3 A	17	17	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -1 A, $V_{\rm GS}$ = 0 V	-0.78	-0.70	V
Dynamic ^b			•		
Total Gate Charge	Qg	V_{DS} = -6 V, V_{GS} = -4.5 V, I_{D} = -5.3 A	9.3	11.5	nC
Gate-Source Charge	Q _{gs}		1.5	1.5	
Gate-Drain Charge	Q_gd		3.2	3.2	
Turn-On Delay Time	t _{d(on)}	V_{DD} = -6 V, R _L = 6 Ω I _D \cong -1 A, V _{GEN} = -4.5 V, R _G = 6 Ω	21	25	ns
Rise Time	tr		19	45	
Turn-Off Delay Time	t _{d(off)}		73	72	
Fall Time	t _f		15	60	

Notes a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si2333DS

Vishay Siliconix

Note: Dots and squares represent measured data.