

FDW2520C

Complementary PowerTrench® MOSFET

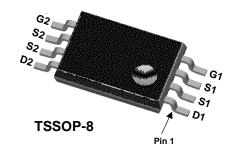
General Description

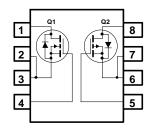
This complementary MOSFET device is produced using Fairchild's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

Applications

- DC/DC conversion
- · Power management
- Load switch

Features


Q1: N-Channel


6 A, 20 V. $R_{DS(ON)} = 18 \ m\Omega \ @ \ V_{GS} = 4.5 \ V$ $R_{DS(ON)} = 28 \ m\Omega \ @ \ V_{GS} = 2.5 \ V$

Q2: P-Channel

-4.4A, 20 V. $R_{DS(ON)} = 35~m\Omega @~V_{GS} = -4.5~V$ $R_{DS(ON)} = 57~m\Omega @~V_{GS} = -2.5~V$

- High performance trench technology for extremely low R_{DS(ON)}
- Low profile TSSOP-8 package

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Q1	Q2	Units
V _{DSS}	Drain-Source Voltage	20	-20	V
V _{GSS}	Gate-Source Voltage	±12	±12	V
I _D	Drain Current - Continuous (Note 1a)	6	-4.4	Α
	- Pulsed	30	-30	
P _D	Power Dissipation (Note 1a)	1	.0	W
	(Note 1b)	(0.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 t	o +150	°C

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	125	°C/W
		(Note 1b)	208	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
2520C	FDW2520C	13"	12mm	3000 units

Symbol	Parameter	Parameter Test Conditions		Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	Q1 Q2	20 –20			V
ΔBV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C I _D = -250 μA, Referenced to 25°C	Q1 Q2	-	14 –17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V V _{DS} = -16 V, V _{GS} = 0 V	Q1 Q2			1 –1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$	Q1 Q2			<u>+</u> 100 +100	nA
On Char	acteristics (Note 2)				•	. —	•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{DS} = V_{GS}, I_D = -250 \mu A$	Q1 Q2	0.4 -0.4	1.0 -1.0	1.5 -1.5	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	Q1 Q2		-3.3 3.1		mV/°C
R _{DS(on)} Static Drain-Source On-Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$ $V_{GS} = 2.5 \text{ V}, I_D = 5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		14 19 19	18 28 29	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -4.4 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -3.3 \text{ A}$	Q2		28 43 39	35 57 56	mΩ
I _{D(on)}	On-State Drain Current	$\begin{aligned} &V_{GS} = -4.5 \text{ V}, \ I_D = -4.4 \text{ A}, \ T_J = 125^{\circ}\text{C} \\ &V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V} \\ &V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V} \end{aligned}$	Q1 Q2	30 -30			Α
g FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 6 \text{ A}$ $V_{DS} = -5 \text{ V}, I_{D} = -4.4 \text{ A}$	Q1 Q2		30 17		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	Q1: V _{DS} = 10 V, V _{GS} = 0 V,	Q1 Q2		1325 1330		pF
Coss	Output Capacitance	f = 1.0 MHz Q2:	Q1 Q2		358 552		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz	Q1 Q2		168 153		pF
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time	Q1: V _{DD} = 10 V, I _D = 1 A,	Q1 Q2		6 12	20 25	ns
t _r	Turn-On Rise Time	V_{GS} = 4.5V, R_{GEN} = 6 Ω Q2:	Q1 Q2		11 19	40 40	ns
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = -10 \text{ V}, I_{D} = -1 \text{ A},$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	Q1 Q2		32 60	60 100	ns
t _f	Turn-Off Fall Time		Q1 Q2		19 37	34 70	ns
Q_g	Total Gate Charge	Q1: V _{DS} = 10 V, I _D = 6 A,	Q1 Q2		14 14	20 20	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 4.5 V Q2:	Q1 Q2		2.6 3.0		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -5 \text{ V}, I_{D} = -4.4 \text{ A}, V_{GS} = -4.5 \text{ V}$	Q1 Q2		3.7 3.9		nC

Electrical Characteristics (continued)

T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	ırce Diode Characteristi	cs and Maximum Ratings					
Is	Maximum Continuous Drain-So		Q1 Q2			0.83 -0.83	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 0.83 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V}, I_S = -0.83 \text{ A}$ (Note 2)	Q1 Q2		0.5 -0.7	1.2 -1.2	V

Notes:

- R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.
 - a) $\rm\,R_{\rm \theta JA}$ is 125°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.
 - b) $R_{\theta JA}$ is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4.
- 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

Typical Characteristics: Q1

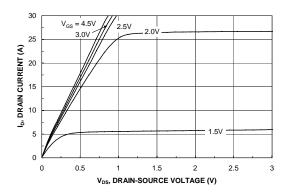
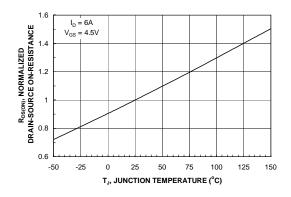



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

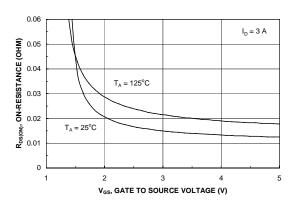
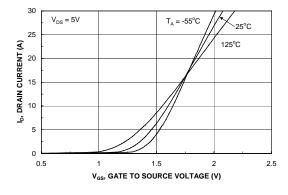



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

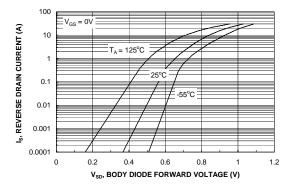
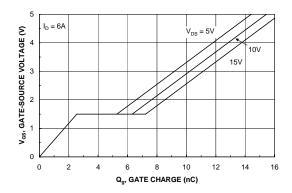



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

f = 1MHz V_{GS} = 0 V

Typical Characteristics: Q1

1500 1250 0 0 4 8 12 16 20 V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

2000

1750

C_{ISS}

Figure 7. Gate Charge Characteristics.

ID, DRAIN CURRENT (A)

0.01

0.01

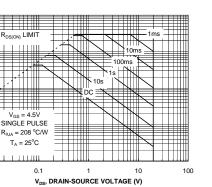


Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics: Q2

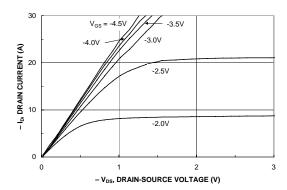


Figure 11. On-Region Characteristics.

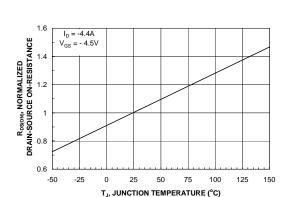


Figure 13. On-Resistance Variation with Temperature.

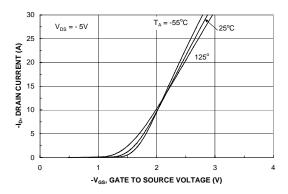


Figure 15. Transfer Characteristics.

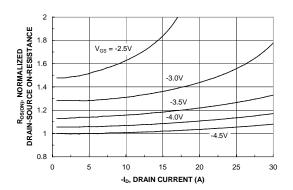


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

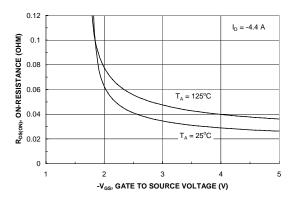


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

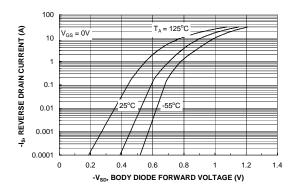
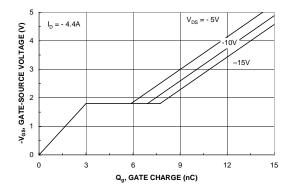



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2

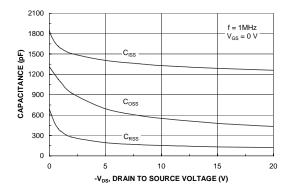
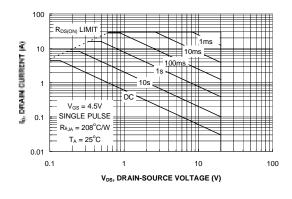



Figure 17. Gate Charge Characteristics.

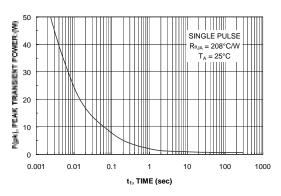


Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

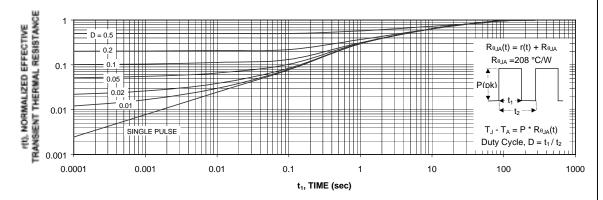
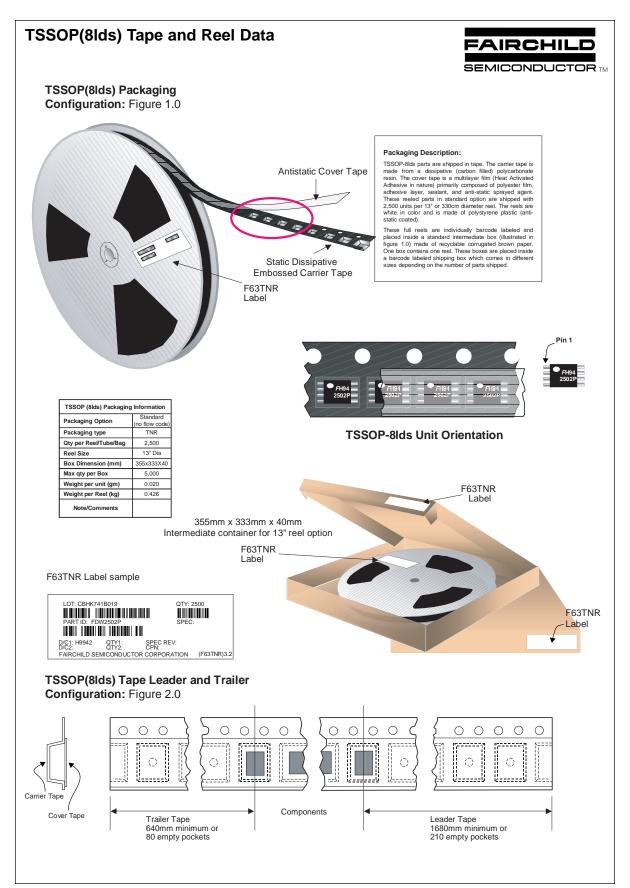
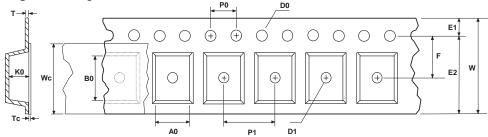



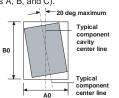
Figure 21. Transient Thermal Response Curve.


Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TSSOP(8lds) Tape and Reel Data, continued

TSSOP(8lds) Embossed Carrier Tape

Configuration: Figure 1.0

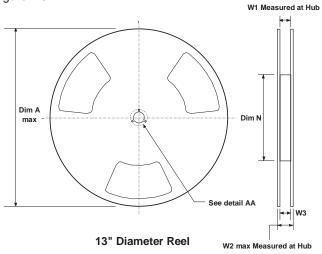

User Direction of Feed	

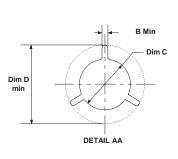
					Dim	ensions	are in m	illimeter						
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
TSSOP(8lds) (16mm)	see notes below	see notes below	16.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	14.25 min	7.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	see notes below	0.450 +/- 0.150	13.0 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)
Component Rotation

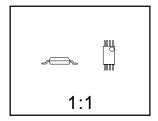



Sketch C (Top View)

Component lateral movement

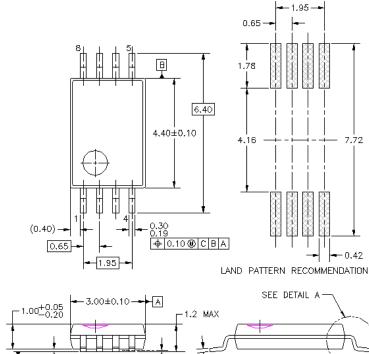
TSSOP(8lds) Reel Configuration:

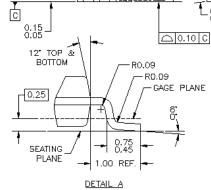
Figure 2.0


Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 101.6	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4

TSSOP-8 Package Dimensions

TSSOP-8 (FS PKG Code S4)





Scale 1:1 on letter size paper

Dimensions shown below are in millimeters

Part Weight per unit (gram): 0.0334

SCALE: 2X

- NOTES: UNLESS OTHERWISE SPECIFIED
 - A) THIS PACKAGE CONFORMS TO JEDEC MO-153, ISSUE E, VARIATION A4, DATED OCTOBER 1997.

 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 C) DIMENSIONS ARE EXCLUSIVE OF BURRS, ONLO FLASH, AND TIE BAR EXTRUSIONS.
 D) DIMENSIONS AND TOLERANCES PER ANSI Y14,5M, 1982.

MTCOBREVB

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.