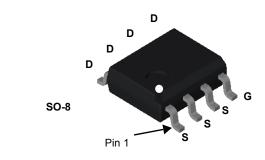
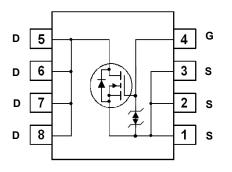
FAIRCHILD SEMICONDUCTOR

November 2008

FDS8812NZ N-Channel PowerTrench[®] MOSFET 30V, 20A, 4.0m Ω

Features


- Max $r_{DS(on)} = 4.0 m\Omega$ at $V_{GS} = 10V$, $I_D = 20A$
- Max $r_{DS(on)}$ = 4.9m Ω at V_{GS} = 4.5V, I_D =18A
- HBM ESD protection level of 6.4KV typical (note 3)
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability
- RoHS compliant



General Description

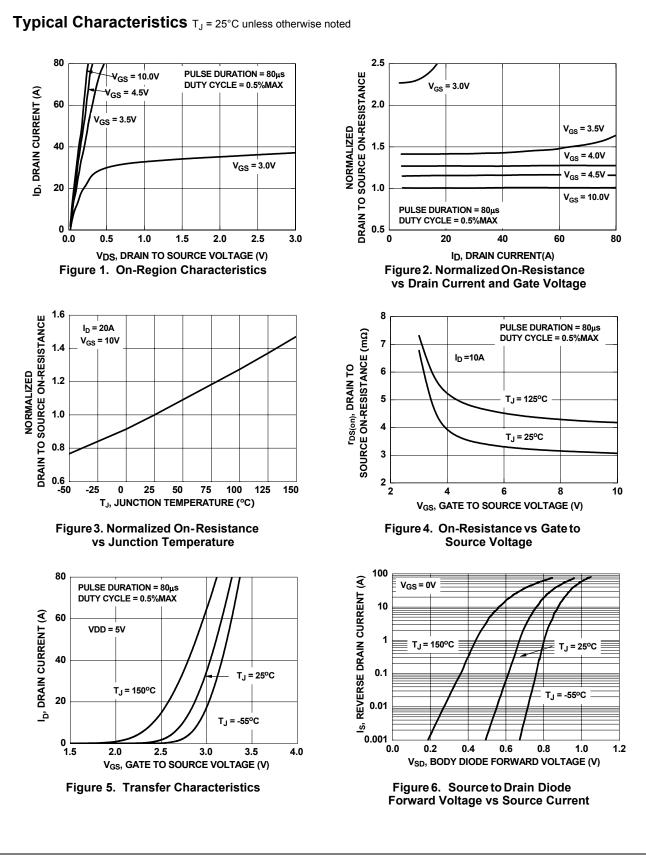
This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance.

This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units V
V _{DS}	Drain to Source Voltage	30		
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous	(Note 1a)	20	
D	-Pulsed		80	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 4)	661	mJ
	Power Dissipation	(Note 1a)	2.5	14/
P _D	Power Dissipation	(Note 1b)	1.0	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

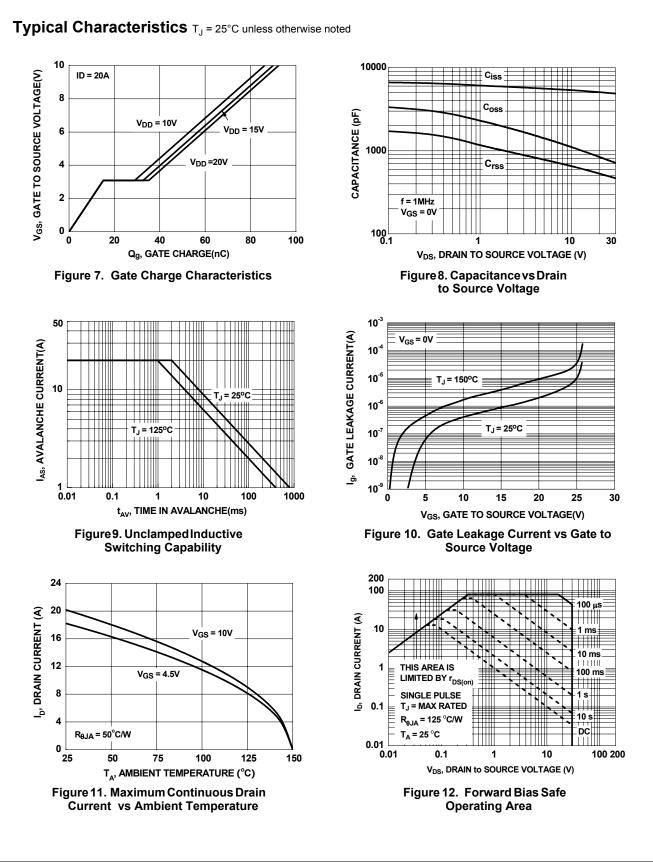
Thermal Characteristics


$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	125	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS8812NZ	FDS8812NZ	13"	12mm	2500 units

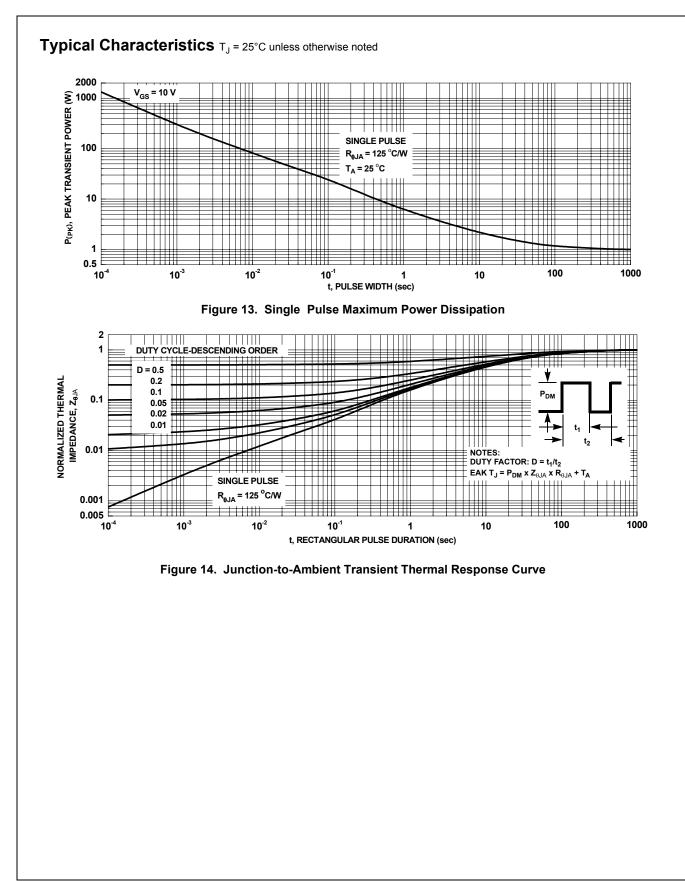
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu A$, referenced to 25°C		19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24V, V _{GS} = 0V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±10	μA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1	1.8	3	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage			-		
ΔT_J	Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-7		mV/°C
		V _{GS} = 10V, I _D = 20A		3.1	4.0	_
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 18A		3.8	4.9	mΩ
		$V_{GS} = 10V, I_D = 20A, T_J = 125^{\circ}C$		4.2	5.3	-
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 20A$		87		S
Dvnamic	Characteristics					
<i>y</i>						
-				5205	6925	pF
C _{iss}	Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$		5205 945	6925 1260	pF pF
C _{iss} C _{oss}		V _{DS} = 15V, V _{GS} = 0V, f = 1MHz				•
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance			945	1260	pF
C _{iss} C _{oss} C _{rss} R _g	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz		945 580	1260	pF pF
C _{iss} C _{oss} C _{rss} R _g	Input Capacitance Output Capacitance Reverse Transfer Capacitance	f = 1MHz		945 580	1260	pF pF
C _{iss} C _{oss} C _{rss} R _g Switching	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	f = 1MHz f = 1MHz		945 580	1260	pF pF
C _{iss} C _{oss} C _{rss} R _g Switching	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics	f = 1MHz f = 1MHz V _{DD} = 15V, I _D = 20A		945 580 1.5	1260 870	pF pF Ω
C _{iss} C _{oss} C _{rss} Rg Switching t _{d(on)} t _r	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Gate Resistance Turn-On Delay Time	f = 1MHz f = 1MHz		945 580 1.5 18	1260 870 33	pF pF Ω ns
C_{iss} C_{oss} C_{rss} R_g Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time	f = 1MHz f = 1MHz V _{DD} = 15V, I _D = 20A		945 580 1.5 18 13	1260 870 33 24	pF pF Ω ns ns
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ \hline \\ R_g \\ \hline \\ Switching \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V V_{DD} = 15V$		945 580 1.5 18 13 55	1260 870 33 24 88	pF pF Ω ns ns ns
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ R_g \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$f = 1MHz$ $f = 1MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$		945 580 1.5 18 13 55 12	1260 870 33 24 88 22	pF pF Ω ns ns ns
$\begin{array}{c} C_{iss} \\ C_{oss} \\ \hline \\ C_{rss} \\ \hline \\ R_g \\ \hline \\ Switching \\ \hline \\ t_{d(on)} \\ t_r \\ t_d(off) \\ t_f \\ \hline \\ t_d(off) \\ t_f \\ \hline \\ Q_g \\ \hline \\ Q_g \\ \hline \\ Q_g \\ \hline \\ Q_g \\ \hline \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V V_{DD} = 15V$		945 580 1.5 18 13 55 12 90	1260 870 33 24 88 22 126	pF pF Ω ns ns ns ns nc
C _{iss} C _{oss} C _{rss} R _g	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V V_{DD} = 15V$		945 580 1.5 18 13 55 12 90 49	1260 870 33 24 88 22 126	pF pF Ω ns ns ns nc nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ R_g \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V V_{DD} = 15V$		945 580 1.5 18 13 55 12 90 49 16	1260 870 33 24 88 22 126	pF pF Ω ns ns ns nc nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ R_g \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \\ \textbf{Drain-So} \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_{D} = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V$ $V_{DD} = 15V$ $V_{GS} = 0V \text{ to } 5V$ $I_{D} = 20A$		945 580 1.5 18 13 55 12 90 49 16	1260 870 33 24 88 22 126 69	pF pF Ω ns ns ns nc nC nC
$\begin{array}{c} C_{iss} \\ C_{oss} \\ C_{rss} \\ R_g \\ \hline \\ \textbf{Switching} \\ t_{d(on)} \\ t_r \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_g \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \hline \end{array}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$f = 1 MHz$ $f = 1 MHz$ $V_{DD} = 15V, I_D = 20A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{GS} = 0V \text{ to } 10V V_{DD} = 15V$		945 580 1.5 18 13 55 12 90 49 16 18	1260 870 33 24 88 22 126	pF pF Ω ns ns ns nc nC nC nC


Pulse Test: Pulse Width < 300 us, Duty Cycle < 2%.
 The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
 Starting T_J = 25°C, L = 3mH, I_{AS} = 21A, V_{DD} = 30V, V_{GS} = 10V.

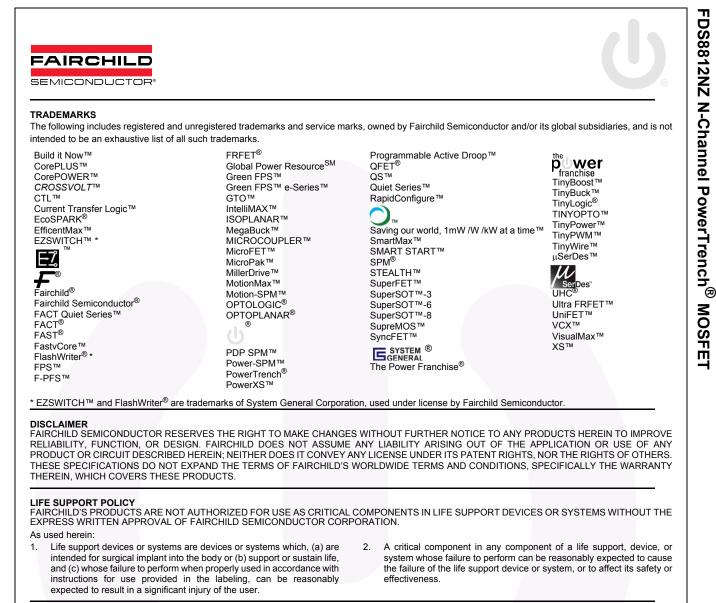
FDS8812NZ Rev.C1

3

www.fairchildsemi.com



FDS8812NZ Rev.C1


4

www.fairchildsemi.com

FDS8812NZ N-Channel PowerTrench[®] MOSFET

FDS8812NZ N-Channel PowerTrench[®] MOSFET

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.