October 2005

FDMA1027P

Dual P－Channel PowerTrench ${ }^{\circledR}$ MOSFET

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra－portable applications．It features two independent P－Channel MOSFETs with low on－state resistance for minimum conduction losses．When connected in the typical common source configuration， bi－directional current flow is possible．

The MicroFET 2×2 package offers exceptional thermal performance for it＇s physical size and is well suited to linear mode applications．

Features

－－3．0 A，－20V． $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=120 \mathrm{~m} \Omega$＠ $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=160 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=240 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$
－Low profile -0.8 mm maximum－in the new package MicroFET $2 \times 2 \mathrm{~mm}$

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain－Source Voltage		－20	V
$\mathrm{V}_{\text {Gss }}$	Gate－Source Voltage		± 8	V
I_{D}	Drain Current－Continuous	（Note 1a）	－2．2	A
	－Pulsed		－6	
P_{D}	Power Dissipation for Single Operation	（Note 1a） （Note 1b）	1.4	W
			0.7	
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {StG }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1a）	86 （Single Operation）	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1b）	173 （Single Operation）	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1c）	69 （Dual Operation）	
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1d）	151 （Dual Operation）	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
027	FDMA1027P	7 in	8 mm	3000 units

Electrical Characteristics		$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV ${ }_{\text {DSs }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{G S}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-20			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-12		${\mathrm{mV} /{ }^{\circ} \mathrm{C}}$
l Dss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
IGss	Gate-Body Leakage	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA
On Characteristics (Note 2)						
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \quad \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4	-0.7	-1.5	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{\Delta \mathrm{T}_{\mathrm{J}}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-Source On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-3.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \hline 90 \\ 120 \\ 172 \\ 118 \end{gathered}$	$\begin{aligned} & \hline 120 \\ & 160 \\ & 240 \\ & 160 \end{aligned}$	$\mathrm{m} \Omega$
$\mathrm{I}_{\mathrm{D} \text { (on) }}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}$	-20			A
$\mathrm{g}_{\text {F }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-3.0 \mathrm{~A}$		7		S
Dynamic Characteristics						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$		435		pF
Coss	Output Capacitance			80		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			45		pF
Switching Characteristics (Note 2)						
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{d}(\mathrm{On})} \\ & \hline \mathrm{t}_{\mathrm{r}} \\ & \hline \end{aligned}$	Turn-On Delay Time	$\begin{array}{ll} \begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, & \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{array} \end{array}$		9	18	ns
	Turn-On Rise Time			11	19	ns
$\mathrm{t}_{\text {d(off }}$	Turn-Off Delay Time			15	27	ns
t_{f}	Turn-Off Fall Time			6	12	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-3.0 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \end{aligned}$		4	6	nC
Q_{gs}	Gate-Source Charge			0.8		nC
Q_{gd}	Gate-Drain Charge			0.9		nC

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Drain-Source Diode Characteristics and Maximum Ratings
$\left.\begin{array}{l|l|l|l|c|c|c}\hline \mathrm{I}_{\mathrm{S}} & \text { Maximum Continuous Drain-Source Diode Forward Current } & & & -1.1 & \mathrm{~A} \\ \hline \mathrm{~V}_{\mathrm{SD}} & \begin{array}{l}\text { Drain-Source Diode Forward } \\ \text { Voltage }\end{array} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.1 \mathrm{~A} \quad \text { (Note 2) }\end{array}\right)$

Notes:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ oz. copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design.
(a) $R_{\theta J A}=86^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062^{\prime \prime}$ thick PCB
(b) $R_{\theta J A}=173^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper
(c) $R_{\theta J A}=69^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062^{\prime \prime}$ thick PCB
(d) $R_{\theta J A}=151^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper

Scale 1:1 on letter size paper
2. Pulse Test: Pulse Width < 300 μ, Duty Cycle $<2.0 \%$

Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

MLPO6JrevB

