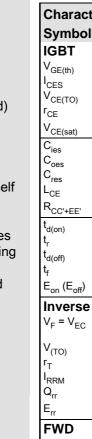
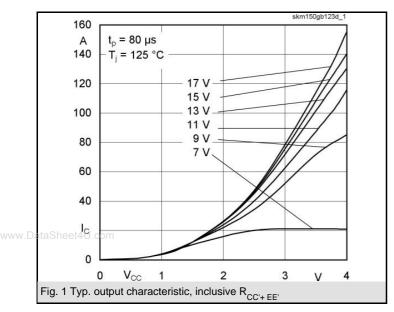


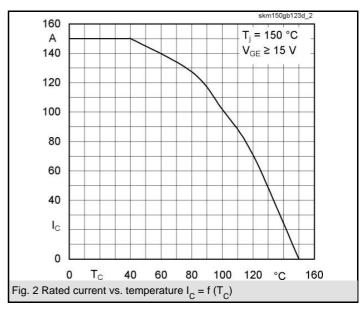
IGBT Modules

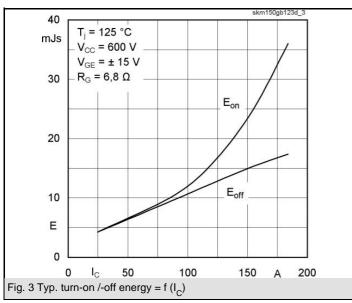

SKM 150GB123D SKM 150GAL123D SKM 150GAR123D

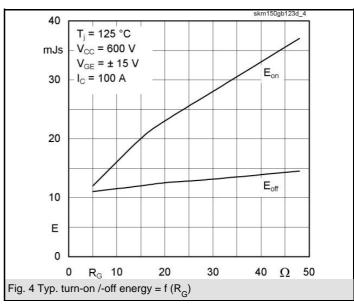
Features

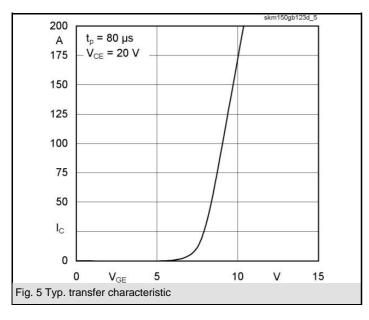
- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

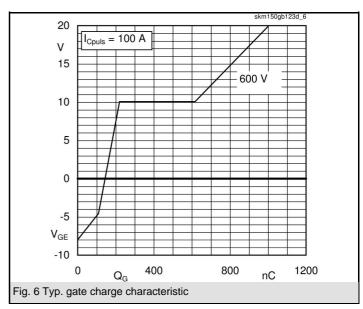

Typical Applications

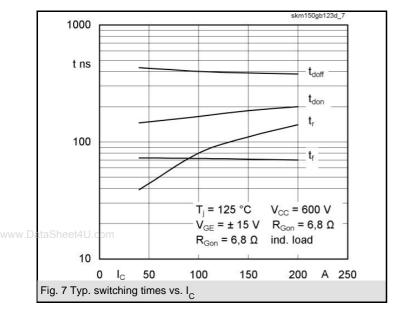

• Switching (not for linear use)

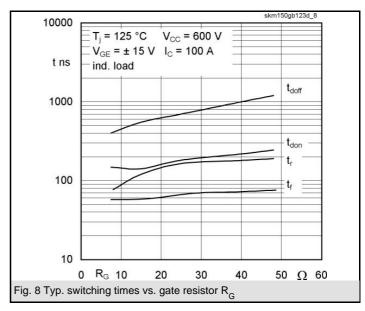


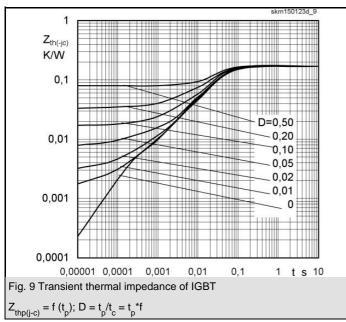

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	T _c = 25 (80) °C	150 (110)	Α					
I _{CRM}	t _p = 1 ms	200	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	150 (100)	Α					
I _{FRM}	t _p = 1 ms	200	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	Α					
Freewheeling diode								
I _F	$T_c = 25 (80) ^{\circ}C$	200 (135)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	300	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1450	Α					

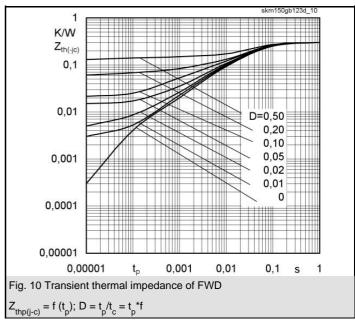

Characte	ristics	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA		
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1,4 (1,6)	1,6 (1,8)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		11 (15)	14 (19)	mΩ		
V _{CE(sat)}	I_{Cnom} = 100 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		6,5	8,5	nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1	1,5	nF		
C _{res}			0,5	0,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 100 A		160	320	ns		
t _r	$R_{Gon} = R_{Goff} = 6.8 \Omega$, $T_j = 125 °C$		80	160	ns		
t _{d(off)}	V _{GE} = ± 15 V		400	520	ns		
t _f			70	100	ns		
E _{on} (E _{off})			13 (11)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 100 A; V_{GE} = 0 V; T_j = 25 (125) $^{\circ}$ C		2 (1,8)	2,5	V		
$V_{(TO)}$	T _i = 125 () °C			1,2	V		
r _T	$T_{j} = 125 () ^{\circ}C$		8	11	mΩ		
I _{RRM}	$I_{Fnom} = 100 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		35 (50)		Α		
Q_{rr}	di/dt = 1000 A/µs		5 (14)		μC		
E _{rr}	V _{GE} = V				mJ		
FWD							
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C			1,2	V		
r_T	T _j = 125 () °C		5	8,7	mΩ		
I _{RRM}	$I_F = 100 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		40 (65)		A		
Q_{rr}	di/dt = A/μs		5 (15)		μC		
E _{rr}	V _{GE} = V				mJ		
	characteristics	ı					
R _{th(j-c)}	per IGBT			0,15	K/W		
R _{th(j-c)D}	per Inverse Diode			0,3	K/W		
$R_{th(j-c)FD}$	per FWD			0,25	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanic	al data			·			
M_s	to heatsink M6	3		5	Nm		
M_t	to terminals M6	2,5		5	Nm		
W				325	g		

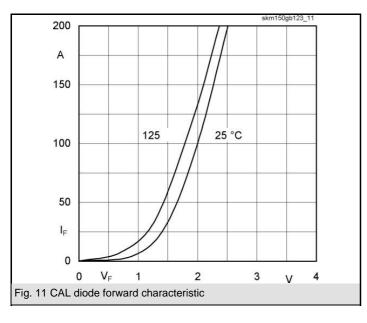


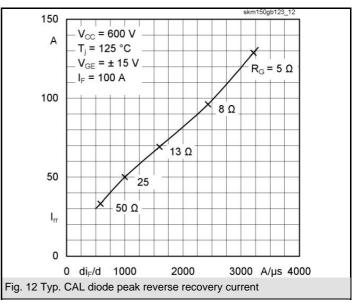


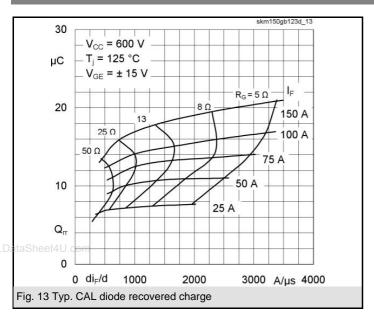


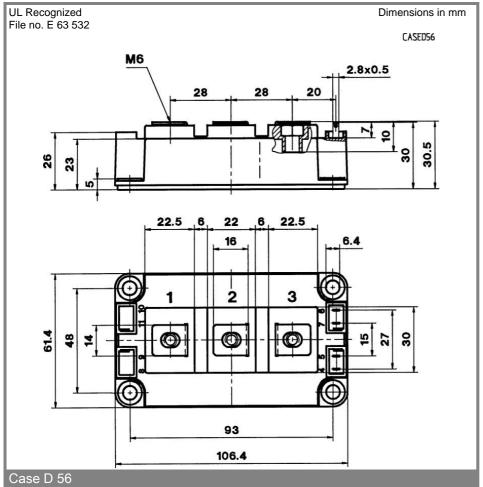


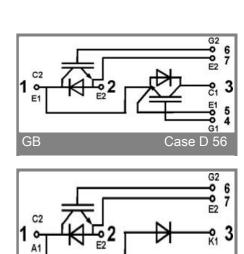


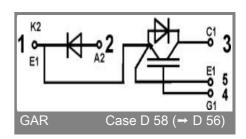












Case D 57 (→ D 56)

GAI

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.