

SEMICONDUCTOR

FPAB30BH60B

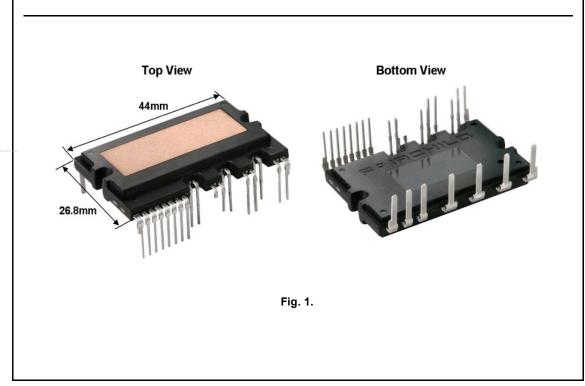
Smart Power Module(SPM®) for Front-End Rectifier

General Description

FPAB30BH60B is an advanced smart power module(SPM®) of PFC(Power Factor Correction) that Fairchild has newly developed and designed mainly targeting mid-power application especially for an air conditioners. It combines optimized circuit protection and drive IC matched to high frequency switching IGBT. System reliability is futher enhanced by the integrated under-voltage lock-out and over-current protection function.

Features

- Low thermal resistance due to Al₂O₃-DBC substrate
- 600V-30A Single phase IGBT PWM converter including a drive IC for gate driving and protection
- Typical switching frequency of 20kHz
- Isolation rating of 2500Vrms/min.

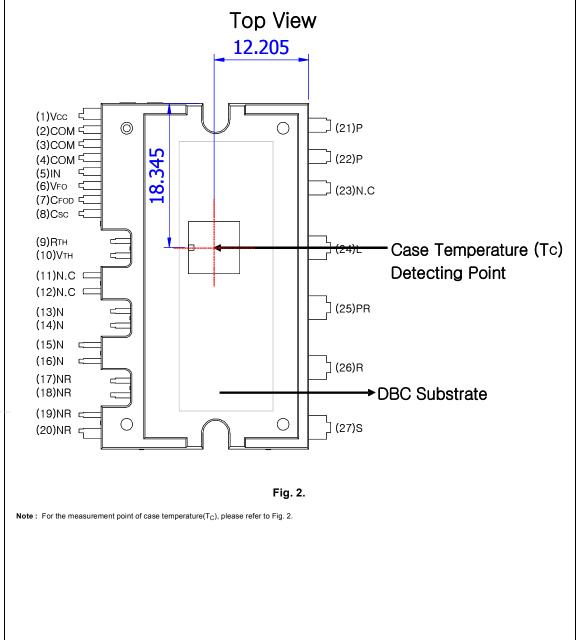

Applications

· Home appliances application like air conditioner

FPAB30BH60B Smart Power Module (SPM®)

April 2010

SPM


Integrated Power Functions

• PFC converter for single-phase AC/DC power conversion (Please refer to Fig. 3)

Integrated Drive, Protection and System Control Functions

- For IGBT: Gate drive circuit, Overcurrent circuit protection (OC), Control supply circuit under-voltage (UV) protection
- Fault signaling: Corresponding to a UV fault and OC fault
- Input interface: 3.3/5V CMOS/LSTTL compatible, Schmitt trigger input

Pin Configuration

in Number	Pin Name	Pin Description						
1	V _{CC}	Common Bia	s Voltage for IC a	nd IGBT Driving				
2,3,4	COM	Common Su	oply Ground					
5	IN	Signal Input	for IGBT					
6	V _{FO}	Fault Output						
7	C _{FOD}			ation Time Selectio				
8	C _{SC}	Capacitor (Lo	Dacitor (Low-pass Filter) for Over Current Detection					
9	R _(TH)		C Thermistor terminal					
10	V _(TH)		Thermistor terminal					
11,12	N.C	No Connection	on*					
13~16	N	IGBT emitter						
17~20	N _R		-Link of Rectifier					
21,22	Р	Positive Rail						
23	N.C	No Connectio						
24		Reactor conr						
25	P _R		Link of Rectifier					
26	R	AC input for I						
27	S	AC input for	s-phase					
ternal E	quivalen (10) VTH (9) RTH (8) CSC (7) CFOD		and Input/O	utput Pins	(21,22) P (24) L			
ternal E	(10) VTH (9) RTH (8) CSC (7) CFOD (6) VFO (5) IN (2~4) COM (1) VCC (13~16) N		NTC amistor	utput Pins				
ternal E	(10) VTH (9) RTH (8) CSC (7) CFOD (6) VFO (5) IN (2~4) COM (1) VCC		OUT		(24) L (25) PR (25) R	, ,		
	(10) VTH (9) RTH (8) CSC (7) CFOD (6) VFO (5) IN (2~4) COM (1) VCC (13~16) N (17~20) NR		OUT	.3.	(24) L (25) PR (25) R			
	(10) VTH (9) RTH (8) CSC (7) CFOD (6) VFO (5) IN (2~4) COM (1) VCC (13~16) N (17~20) NR		OUT	.3.	(24) L (25) PR (25) R	Quantity		

©2010 Fairchild Semiconductor Corporation

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, Unless Otherwise Specified) Converter Part

Item	Symbol	Condition	Rating	Unit	
Supply Voltage	Vi	Applied between R-S	264	V _{RMS}	
Supply Voltage (Surge)	V _{i(Surge)}	Applied between R-S	500	V	
Output Voltage	V _{PN}	Applied between P- N	450	V	
Output Voltage (Surge)	V _{PN(Surge)}	Applied between P- N	500	V	
Collector-emitter Voltage	V _{CES}		600	V	
Each IGBT Collector Current	Ι _C	T _C = 25°C, T _J < 150°C	30	Α	
Each IGBT Collector Current (peak)	I _{CP}	T _C = 25°C, T _J < 150°C Under 1ms pulse width	60	A	
Collector Dissipation	P _C	T _C = 25°C per One IGBT	104	W	
Repititive Peak Reverse Voltage	V _{RRM}		600	V	
Peak Forward Surge Current	I _{FSM}	Single half sine-wave	350	Α	
Operating Junction Temperature	ТJ		-40 ~ 150	°C	

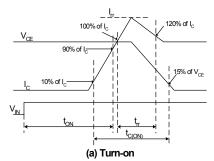
Control Part

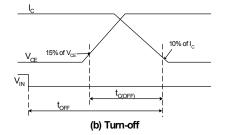
ltem	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between V _{CC} - COM	20	V
Input Signal Voltage	V _{IN}	Applied between IN - COM	-0.3~V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM	-0.3~V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM	-0.3~V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Storage Temperature	T _{STG}		-40 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to DBC	2500	V _{rms}

Thermal Resistance


Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	R _{θ(j-c)Q}	IGBT	-	-	1.2	°C/W
Resistance	R _{θ(j-c)F}	FRD	-	-	1.4	°C/W
t.	R _{θ(j-c)R}	Rectifier	-	-	1.7	°C/W


Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified) **Converter Part**

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
IGBT saturation voltage	V _{CE(sat)}	V _{CC} =15V, V _{IN} = 5V; I _C =30A	-	2.2	2.8	V
FRD forward voltage	V _{FF}	I _F = 30A	-	1.9	2.6	V
Rectifier forward voltage	V _{FR}	I _F = 30A	-	1.2	1.5	V
Switching Times	t _{ON}	V _{PN} = 400V, V _{CC} = 15V, I _C =30A	-	500	-	ns
	t _{C(ON)}	$V_{IN} = 0V \leftrightarrow 5V$, Inductive Load	-	200	-	ns
	t _{OFF}	(Note 1)	-	420	-	ns
	t _{C(OFF)}		-	100	-	ns
	t _{rr}		-	60	-	ns
	I _{rr}		-	7	-	Α
Collector - emitter Leakage Current	I _{CES}	V _{CE} = V _{CES}	-	-	250	μA

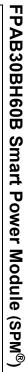
Note
1. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4

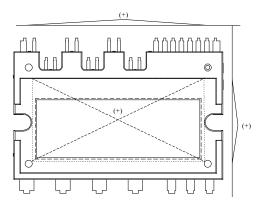
Electrical Characteristics

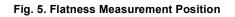
Fig. 4. Switching Time Definition

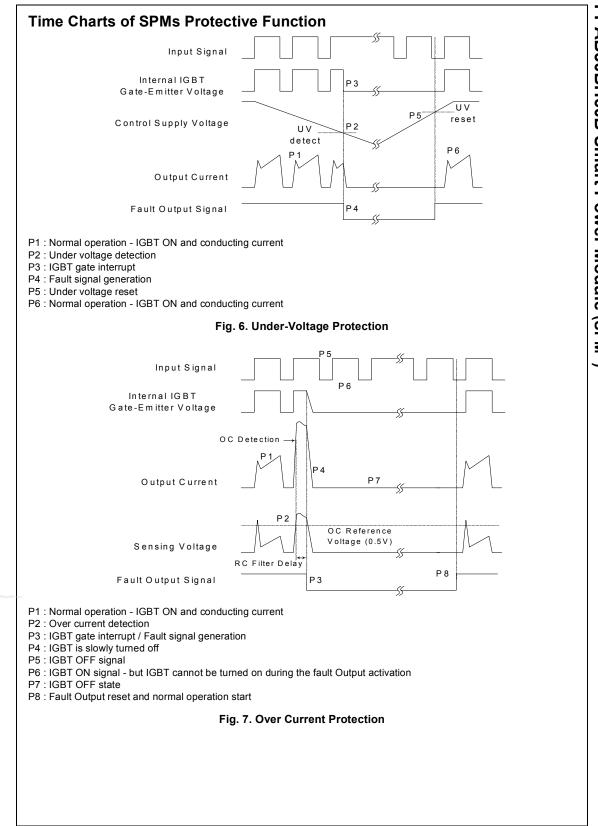
Control Part

Item	Symbol	ymbol Condition		Min.	Тур.	Max.	Unit
Quiescent V _{CC} Supply Current	IQCCL	V _{CC} = 15V, IN = 0V	V _{CC} - COM	-	-	26	mA
Fault Output Voltage	V _{FOH}	V _{SC} = 0V, V _{FO} Circui	t: 4.7kΩ to 5V Pull-up	4.5	-	-	V
	V _{FOL}	V _{SC} = 1V, V _{FO} Circui	t: 4.7kΩ to 5V Pull-up	-	-	0.8	V
Over Current Trip Level	V _{SC(ref)}	V _{CC} = 15V		0.45	0.5	0.55	V
Supply Circuit Under-	UV _{CCD}	Detection Level		10.7	11.9	13.0	V
Voltage Protection	UV _{CCR}	Reset Level		11.2	12.4	13.2	V
Fault-out Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 2)		1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	Applied between IN - COM		2.8	-	-	V
OFF Threshold Voltage	V _{IN(OFF)}			-	-	0.8	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note:	3, Fig. 9)	-	47.0	-	kΩ
		@ T _{TH} = 100°C (Note	e3, Fig. 9)	-	2.9	-	kΩ

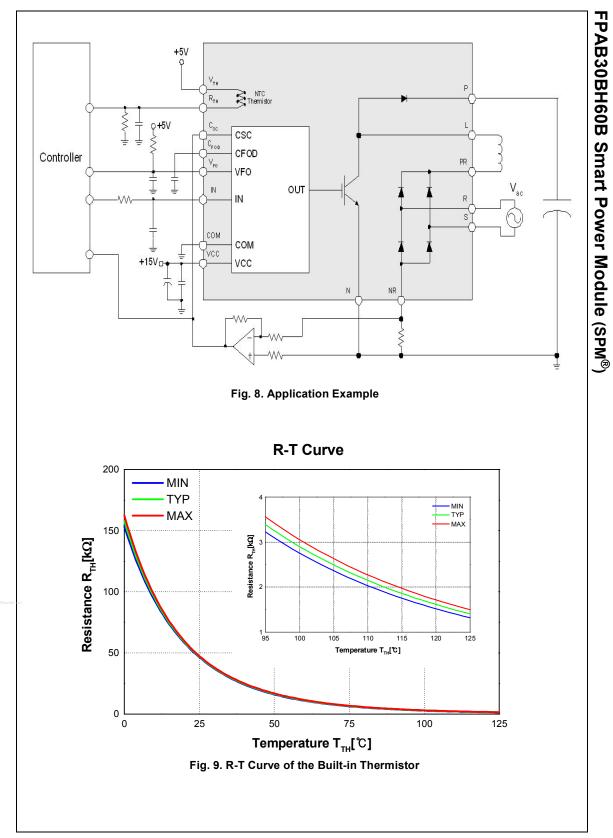

Note 2. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : C_{FOD} = 18.3 x 10⁻⁶ x $t_{FOD}[F]$ 3. TrH is the temperature of know case temperature(Tc), please make the experiment considering your application.

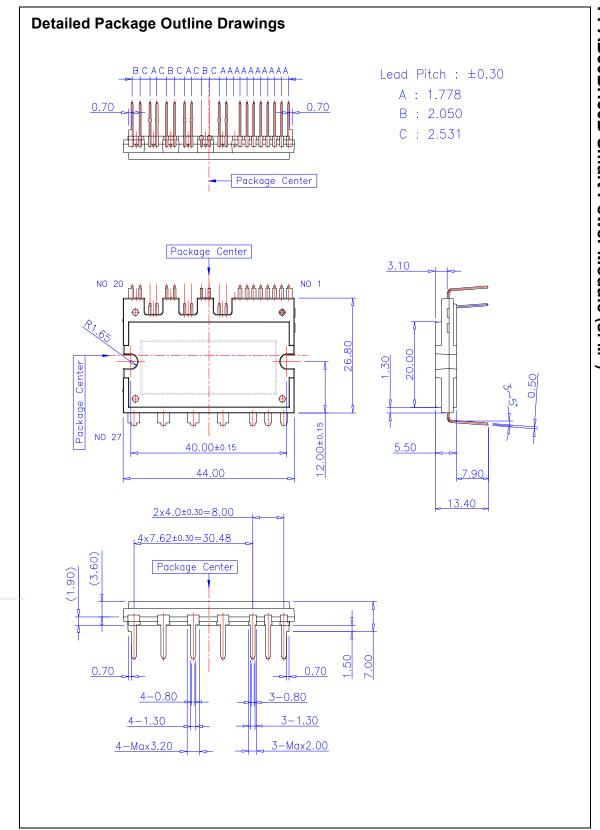

Recommended Operating Condition

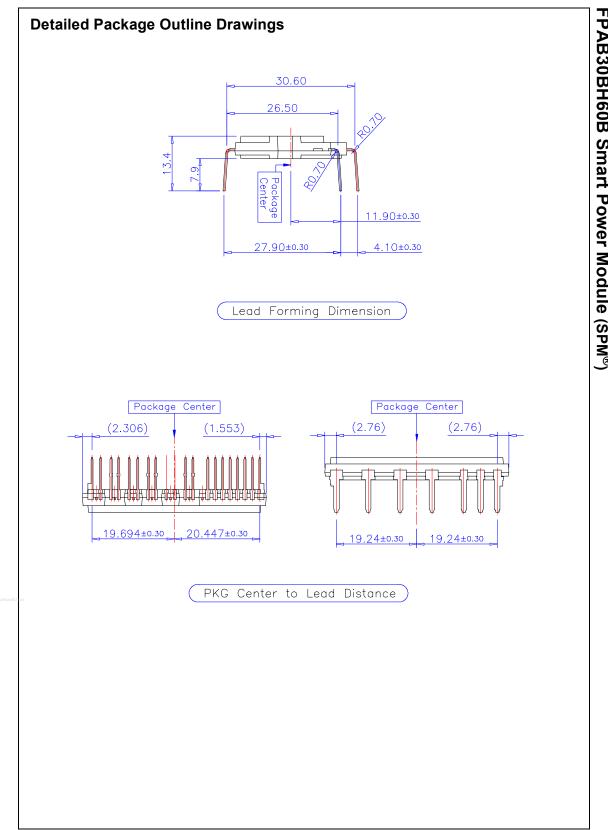

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Supply Voltage	Vi	Applied between R-S	187	220	253	V
Output Voltage	V _{PN}	Applied between P-N		380	400	V
Control Supply Voltage	V _{CC}	Applied between V _{CC(L)} - COM	13.5	15	16.5	V
Control supply variation	dV _{CC} /dt		-1	-	1	V/μs
PWM Input Frequency	f _{PWM}	T _J ≤ 150°C per IGBT		20		kHz
Allowable Input Current	l _i	T _C < 90°C, V _i =220V, V _{PN} =380V			30	Α
(Peak)		V _{PWM} =20KHz				

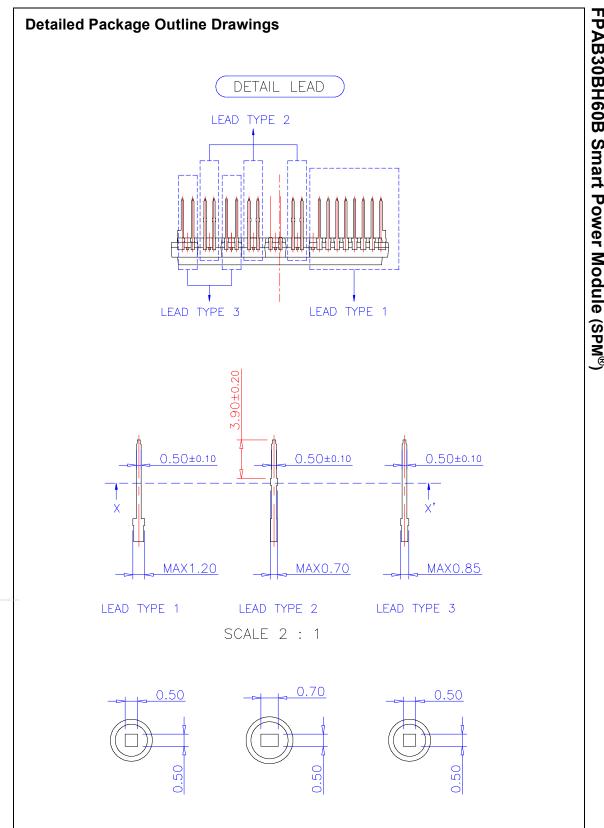

Mechanical Characteristics and Ratings

ltem	C.		Units			
item		ondition	Min.	Тур.	Max.	Units
Mounting Torque	Mounting Screw: - M3	Recommended 0.62N•m	0.51	0.62	0.72	N•m
Device Flatness	Note Fig. 5		0	-	+120	μm
Weight			-	15.00	-	g









FPAB30BH60B Smart Power Module (SPM®)

©2010 Fairchild Semiconductor Corporation

FPAB30BH60B Smart Power Module (SPM®)

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ ® F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™

F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR®** PDP SPMTM

Power-SPM™ PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ ⊃™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

ESYSTEM®* GENERAL The Power Franchise®

power*

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ TriFault Detect™ TRUECURRENT™*

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter®*

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS ON NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors who are full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.