QUAD D FLIP-FLOP

The MC54/74F175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where both true and complementary outputs are required and clock and clear inputs are common to all flip-flops. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs when LOW.

- Four Edge-triggered D-type Inputs
- Buffered Positive Edge-triggered Common Clock
- Buffered Asynchronous Common Reset
- True and Complementary Outputs
- ESD > 4000 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTION TABLE

Inputs	Outputs	
$@ \mathrm{t}_{\mathrm{n}}, \overline{\mathrm{MR}}=\mathrm{H}$	$@ \mathrm{t}_{\mathrm{n}}+1$	
D_{n}	Q_{n}	$\overline{\mathrm{Q}}_{\mathrm{n}}$
L	L	H
H	H	L

$t_{n}=$ Bit time before clock positive-going transition
$t_{n}+1=$ Bit time after clock positive-going transition
H = HIGH Voltage Level
L = LOW Voltage Level

QUAD D FLIP-FLOP
FAST $^{\text {™ }}$ SCHOTTKY TTL

MC54FXXXJ	Ceramic
MC74FXXXN	Plastic
MC74FXXXD	SOIC

MC54/74F175

LOGIC DIAGRAM

NOTE:
This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FUNCTIONAL DESCRIPTION

The F175 consists of four edge-triggered D flop-flops with individual D inputs and Q and \bar{Q} outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs, one setup time before, on the LOW-to-HIGH clock (CP) transition, causing individual Q and
\bar{Q} outputs to follow. A LOW input on the Master Reset (MR) will force all Q outputs LOW and \bar{Q} outputs HIGH independent of Clock or Data inputs. The F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54, 74	4.5	5.0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54, 74			-1.0	mA
I_{OL}	Output Current - Low	54, 74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input	Voltage
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V	Guaranteed Input	Voltage
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	2.5	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		2.7	3.4		V	$\mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage		0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }^{\text {IIH }}$	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=$ MAX
				100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	$V_{C C}=$ MAX
IIL	Input LOW Current			-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
Ios	Output Short Circuit Current (Note 2)	-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$V_{C C}=$ MAX
ICC	Power Supply Current		22.5	34	mA	$\begin{aligned} & \mathrm{D}_{n}=\overline{\mathrm{MR}}=4.5 \mathrm{~V} \\ & \mathrm{CP}=\boldsymbol{\Gamma} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

Symbol	Parameter	54/74F			54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\max }$	Maximum Clock Frequency	100	140		100		100		MHz
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $C P \text { to } Q_{n} \text { or } \bar{Q}_{n}$	3.5 4.0	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 8.5 \end{aligned}$	3.5 4.0	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 9.5 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to ${ }^{-} \mathrm{Q}_{\mathrm{n}}$	4.5	9.0	11.5	4.5	15	4.5	13	ns
tPLH	Propagation Delay $\overline{M R}$ to \bar{Q}_{n}	4.0	6.5	8.5	4.0	10	4.0	9.0	ns

AC OPERATING REQUIREMENTS

Symbol	Parameter	54/74F			54F		74F		Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ V_{C C}=5.0 \mathrm{~V} \pm 10 \% \end{gathered}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \end{aligned}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{aligned} & \hline 4.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 4.0 \\ & 5.0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$	5.0			5.0		5.0		ns
$\mathrm{trec}^{\text {c }}$	Recovery Time, $\overline{\text { MR }}$ to CP	5.0			5.0		5.0		ns

