

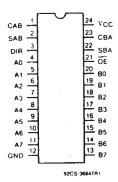
Octal-Bus Transceiver/Registers, 3-State

CD54/74AC/ACT646 - Non-Inverting CD54/74AC/ACT648 - Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 5.3 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

The RCA CD54/74AC646 and CD54/74AC648 and the CD54/74ACT646 and CD54/74ACT648 3-state, octal-bus transceiver/registers use the RCA ADVANCED CMOS technology. The CD54/74AC648 and CD54/74ACT648 have inverting outputs. The CD54/74AC646 and CD54/74ACT646 have non-inverting outputs. These devices are bus transceivers with D-type flip-flops which act as internal storage registers on the LOW-to-HIGH transition of either CAB or CBA clock inputs. Output Enable (OE) and Direction (DIR) inputs control the transceiver functions. Data present at the high-impedance output can be stored in either register or both but only one of the two buses can be enabled as outputs at any one time. The Select controls (SAB and SBA) can multiplex stored and transparent (real time) data. The Direction control determines which data bus will receive data when the Output Enable (OE) is LOW. In the highimpedance mode (Output Enable HIGH), A data can be stored in one register and B data can be stored in the other register. The clocks are not gated with the Direction (DIR) and Output Enable (OE) terminals; data at the A or B terminals can be clocked into the storage flip-flops at any time.


The CD74AC/ACT646 and CD74AC/ACT648 are supplied in 24-lead dual-in-line narrow-body plastic packages (EN suffix) and in 24-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 o +125°C).

The CD54AC/ACT646 and CD54AC/ACT648, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types leature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

*FAST is a Registered Trademark of Fairchild Semiconductor Corp.

TERMINAL ASSIGNMENT

FUNCTION TABLE

	-	INPUTS				DATA	1/0#	OPERATION O	R FUNCTION
ΟĒ	DIR	CAB	CBA	SAB	SBA	A0 THRU A7	B0 THRU B7	646	648
X	X	×	· x	X	×	Input Not specified	Not specified Input	Store A, B unspecified Store B, A unspecified	Store A, B unspecified Store B, A unspecified
HH	X	∴/¯ H or L	_/_ H or₊L	Х . Х	. X X	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage
L	L	X	X H or L	X	Н	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus
LL	H H	X H or L	X X	L H	X X	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus

#The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (V_{∞})0.5 to 6 V
DC INPUT DIODE CURRENT, I _{if} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$)
DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V)
DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, Io (for Vo > -0.5 V or Vo < Vcc + 0.5 V)
DC Vcc or GROUND CURRENT (Icc or Ignp)
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55 to +100°C (PACKAGE TYPE E)
For T _A = +100 to +125°C (PACKAGE TYPE E)
For T _A = -55 to +70°C (PACKAGE TYPE M)
For T _A = +70 to +125°C (PACKAGE TYPE M)
OPERATING-TEMPERATURE RANGE (T _A)
STORAGE TEMPERATURE (Tstg)65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C
*For up to 4 outputs per device; add \pm 25 mA for each additional output.

RECOMMENDED OPERATING CONDITIONS:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

OUADACTEDICTIOS	LIN		
CHARACTERISTICS	MIN.	MAX.	UNITS
Supply-Voltage Range, Vcc*:			
(For T _A = Full Package-Temperature Range)			
AC Types	1.5	5.5	V
ACT Types	4.5	5.5	V
DC Input or Output Voltage, V ₁ , V ₀	0	Vcc	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv			
at 1.5 V to 3 V (AC Types)	0	50	ns/V
at 3.6 V to 5.5 V (AC Types)	0	20	ns/V
at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

To prevent excess currents in the High-Z modes, all I/O terminals should be terminated with 10 k Ω resistors.

Technical Data

CD54/74AC646, CD54/74AC648 CD54/74ACT646, CD54/74ACT648

STATIC ELECTRICAL CHARACTERISTICS: AC Series

					AMBIENT TEMPERATURE (T _A) - °C						
CHARACTERIST	ics	TEST CON	IDITIONS	V _{cc}	+:	25	-40 to	+85	-55 to +125		UNITS
		V, (V)	I _o (mA)	(v)	MIN.	MAX.	MIN.	MAX:	MIN.	MAX.	
High-Level Input Voltage	ViH		,	1.5 3 5.5	1.2 2.1 3.85	_	1.2 2.1 3.85	 	1.2 2.1 3.85	<u> </u>	v
Low-Level Input Voltage	Vil			1.5 3 5.5		0.3 0.9 1.65	-	0.3 0.9 1.65		0.3 0.9 1.65	V.
High-Level Output			-0.05	1.5	1.4	-	1.4	-	1.4		
Voltage	VoH	ViH	-0.05	3	2.9		2.9	_	2.9	_	j
		Or Or	-0.05	4.5	4.4	 	4.4	-	4.4		
		VIL	-4	3	2.58	_	2.48		2.4) v
			-24	4.5	3.94	_	3.8		3.7	_]
		1(-75	5.5	<u> </u>		3.85				
		#. * {	-50	5.5	_	_	_	_	3.85	<u> </u>	
Low-Level Output			0.05	1.5	_	0.1	_	0.1		0.1]
Voltage	VoL	ViH	0.05	3	_	0.1	_	0.1		0.1]
		or	0.05	4.5	_	0.1		0.1		0.1	
		V _{IL}	12	3	_	0.36	_	0.44		0.5] v
			24	4.5		0.36		0.44		0.5	
		#, * {	75	5.5		_		1.65		 .]
		" , " {	50	5.5		T -		<u> </u>		1.65	
Input Leakage Current	ţ,	V _{cc} or GND		5.5		±0.1	_	±1		±1	μΑ
3-State Leakage Current	loz	V _{IM} or V _{IL} V _O = V _{CC} or GND		5.5		±0.5		±5		±10	μΑ
Quiescent Supply Current, MSI	Icc	V _{cc} or GND	0	5.5	_	8	_	80	-	160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissination.

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

			:			AMBIEN	Г ТЕМРЕ	RATURE	(T _A) - °	С		
CHARACTERISTICS		TEST CONDITIONS		V _{cc} (V)	+25		-40 to +85		-55 to +125		UNITS	
		V ₁ (V)			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
High-Level Input Voltage	ViH			4.5 to 5.5	2		2	_	2		v	
Low-Level Input Voltage	VIL	·		4.5 to 5.5		0.8	_	0.8		0.8	V	
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4	_	4.4	_		
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94		3.8	_	3.7	_		
		#, * {	-75	5.5	_	_	3.85	_	<u> </u>	_]	
		"' (-50	5.5					3.85			
Low-Level Output Voltage		V _{IH}	0.05	4.5	-	0.1	_	0.1] —	.0.1		
	Vol	V _{OL}	VOL	or V _{IL}	24	4.5	_	0.36		0.44	_	0.5
		#, * {	· 75	5.5	_	_	_	1.65	, —	_	1	
		"	50	5.5	_	_		_		1.65	1	
Input Leakage Current	li	V _{cc} or GND		5.5	_	±0.1		±1	_	±1	μΑ	
3-State Leakage Current	łoz	V _{IH} or V _{IL} V _O = V _{CC} or GND		5.5	_	±0.5		±5	_	±10	μΑ	
Quiescent Supply Current, MSI	lcc	V _{cc} or GND	0	5.5	_	8		80		160	μΑ	
Additional Quiescent Current per Input Pr TTL Inputs High 1 Unit Load	Supply in Δ1 _{cc}	V _{cc} -2.1		4.5 to 5.5	_	2.4	_	2.8	_	3	mA	

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize nower dissination.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*
CAB, CBA	1.25
SAB, SBA	1.2
DIR	0.67
ŌĒ	1.17
An, Bn	0.4

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C.

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBII	ENT TEMPE	RATURE (T	A) - °C	
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 t	o +85	-55 to +		UNITS
OHAHAGI EMGTOG		(v)	MIN.	MAX.	MIN.	MAX.	
Max. Frequency	fmax	1.5 3.3* 5†	11 101 143		10 89 125		MHz
Setup Time Data to Clock	tsu	1.5 3.3 5	27 3.1 2.2		31 3.5 2.5		ns
Hold Time Data to Clock	tн	1.5 3.3 5	2 2 2		2 2 2		ns
Clock Pulse Width	tw	1.5 3.3 5	44 4.9 3.5	=	50 5.6 4		ns

*3.3 V: min. is @ 3 V †5 V: min is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t, t, = 3 ns, CL = 50 pF

			AMBIE	ENT TEMPE	RATURE (T	A) - °C	
0114040750107100	SYMBOL	V _{cc}		o +85		+125	UNITS
CHARACTERISTICS	STMBOL	(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Store A Data to B Bus Store B Data to A Bus	tецн	1.5 3.3*	4.8	154 17.1	_ 4.7	169 18.9	ns
646	t _{PHL}	5†	3.5	12.3	3.4	13.5	
Store Ā Data to B Bus Store B Data to A Bus 648	t _{РLН} t _{РНL}	1.5 3.3 5	4.8 3.5	154 17.1 12.3	4.7 3.4	169 18.9 13.5	ns
A Data to B Bus B Data to A Bus 646	t _{PLH} t _{PHL}	1.5 3.3 5	4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
Ā Data to B Bus B Data to A Bus 648	t _{PLH} t _{PHL}	1.5 3.3 5	4 2.8	125 14 10	3.9 2.8	138 15.4 11	ns
Select to Data 646	t _{PLH} t _{PHL}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
Select to Data 648	t _{РЕН}	1.5 3.3 5	4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
3-State Enabling/ Disabling Time Bus to Output or Register to Output	tezi tezh telz tenz	1.5 3.3 5	5.2 3.5	154 18.4 12.3	5.1 3.4	169 20.2 13.5	ns
Power Dissipation Capacitance	C _{PD} §	_	150	Тур.	150	Тур.	pF
Min. (Valley) During Switching of Other Outputs (Output Under Test Not Switching)	V _{он} V _{он} v See Fig. 1	5		4 Тур.	4 Typ. @ 25°C		V
	V _{OLP} V _{OLP} See Fig. 1	5	1 Typ. @ 25°C		V		
Input Capacitance	Cı		_	10		10	pF
3-State Output Capacitance	Co	_	_	15		15	pF

*3.3 V: min. is @ 3.6 V max. is @ 3 V

†5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per package. $P_D = V_{CC}^2 \ C_{PD} \ f_i + \Sigma \ (V_{CC}^2 C_L f_o) \ where \ f_i = input \ frequency$

fo = output frequency

C_L = output load capacitance

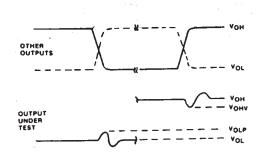
V_{cc} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

			AMBI	T				
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85		-55 to +125		UNITS	
		(*)	MIN.	MAX.	MIN.	MAX.]	
Max. Frequency	f _{max}	5*	125	— ,	110		MHz	
Setup Time Data to Clock	tsu	. 5	2.2	_	2.5	_	ns	
Hold Time Data to Clock	t _H	5	2		. 2	_	ns	
Clock Pulse Width	tw	5	3.9	_	4.5	_	ns	

^{*5} V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: ACT Series; t, t = 3 ns, CL = 50 pF


	•			AMBIENT TEMPERATURE (TA) - °C				
CHARACTERISTICS	SYMBOL	V _{cc}	-40	to +85	-55 to	+125	UNITS	
		(V)	MIN.	MAX.	MIN.	MAX.]	
Propagation Delays: Store A Data to B Bus Store B Data to A Bus 646	tегн tенг	5*	4	14.1	3.9	15.5	ns	
Store Ā Data to B Bus Store B Data to A Bus 648	t _{PLH} t _{PHL}	5	4	14.1	3.9	15.5	ns	
A Data to B Bus B Data to A Bus 646	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	12.5	ns	
Ā Data to B Bus B Data to A Bus 648	t _{PLH} t _{PHL}	5	3.2	11.4	3.1	→ 12.5	ns	
Select to Data 646	t _{PLH} t _{PHL}	5	3.7	13.2	3.6	14.5	ns	
Select to Data 648	t _{PLH} t _{PHL}	5	4	14.1	3.9	15.5	ns	
3-State Enabling/ Disabling Time Bus to Output or Register to Output	t _{PZL} t _{PZH} t _{PLZ} t _{PHZ}	5	4	14.1	3.9	15.5	ns	
Power Dissipation Capacitance	C _{PD} §	_	150	Тур.	150	Тур.	ρF	
Min. (Valley) During Switching of Other Outputs (Output Under Test Not Switching)	V _{OH} V _{OHV} See Fig. 1	5	4 Typ. @ 25° C			v		
Max. (Peak) During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} V _{OLP} See Fig. 1	5		1 Тур. (@ 25°C		٧	
Input Capacitance	Cı	_		10		10	pF	
3-State Output Capacitance	Co	_		15	_	15	ρF	

¹⁵ V: min. is @ 5.5 V max. is @ 4.5 V

§C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD}V_{CC}^2 f_i + \sum (C_L V_{CC}^2 f_o) + V_{CC} \Delta I_{CC}$ where $f_i = input$ frequency

f_o = output frequency
C_L = output load capacitance
V_{CC} = supply voltage.

PARAMETER MEASUREMENT INFORMATION

- NOTES:

 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.

 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR C 1 MHz, t, 3 m, s, + 3 m, s KEW 1 m.

 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 JF CAPACTOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

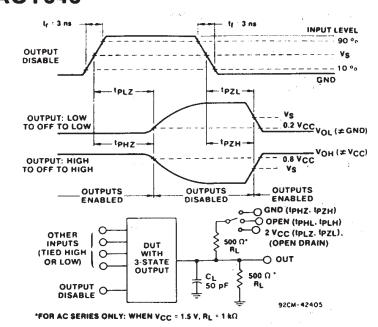


Fig. 2 - Three-state propagation delay waveforms and test circuit.

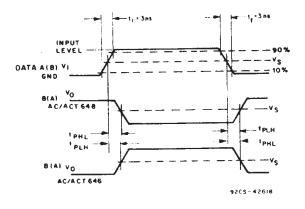


Fig. 3 - Propagation delay times.

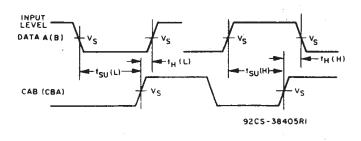
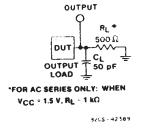



Fig. 4 - Data setup and hold times.

	CD54/74AC	CD54/74ACT
Input Level	Vcc	3 V
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{CC}

Fig. 5 - Test circuit.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated