

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{P}_{\mathbf{0}}-\mathrm{P}_{15}$	Parallel Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Pulse Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
M	Mode Select Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
SI	Serial Data Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
SO	Serial Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 16-bit shift register operates in one of three modes, as indicated in the Shift Register Operations Table.
HOLD - a HIGH signal on the Chip Select ($\overline{\mathrm{CS}})$ input prevents clocking, and data is stored in the sixteen registers. Shift/Serial Load- data present on the SI pin shifts into the register on the falling edge of $\overline{C P}$. Data enters the Q_{0} position and shifts toward Q_{15} on successive clocks, finally appearing on the SO pin.
Parallel Load- data present on $\mathrm{P}_{0}-\mathrm{P}_{15}$ are entered into the register on the falling edge of $\overline{\mathrm{CP}}$. The SO output represents the Q_{15} register output.
To prevent false clocking, $\overline{\mathrm{CP}}$ must be LOW during a LOW-to-HIGH transition of $\overline{\mathrm{CS}}$.

Shift Register Operations Table

Control Input			Operating Mode	
$\overline{\mathbf{C S}}$	\mathbf{M}	$\overline{\mathbf{C P}}$		
H	X	X	Hold	
L	L	$乙$	Shift/Serial Load	
L	H	$乙$	Parallel Load	

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial
\sim = HIGH-to-LOW Transition

Block Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	
Standard Output	-0.5 V to V_{CC}
3-STATE Output	-0.5 V to +5.5 V

Current Applied to Output
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to V_{CC}
-0.5 V to +5.5 V

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter	Min	Typ Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage	2.0		V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage		0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage		-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.7 \end{aligned}$		V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\mathrm{CC}}$		0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current		5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\overline{\mathrm{I}_{\mathrm{BVI}}}$	Input HIGH Current Breakdown Test		7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\overline{I C E X}$	Output HIGH Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A},$ All Other Pins Grounded
$\overline{\mathrm{loD}}$	Output Leakage Circuit Current		3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV},$ All Other Pins Grounded
ILL	Input LOW Current		-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60	-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Current		72	mA	Max	

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	110		45		90		MHz
${ }_{\text {tPLH }}$	Propagation Delay	4.5	9.0	11.0	4.5	17.0	4.5	12.0	ns
$\mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{CP}}$ to SO	5.0	9.0	12.5	5.0	14.5	5.0	13.5	

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}= \\ \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW	4.0		4.0		4.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	SI to $\overline{\mathrm{CP}}$	4.0		4.0		4.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	4.0		4.0		4.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	Sl to $\overline{\mathrm{CP}}$	4.0		4.0		4.0		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0		3.0		3.0		ns
$\mathrm{t}_{\text {s }}(\mathrm{L})$	P_{n} to $\overline{\mathrm{CP}}$	3.0		3.0		3.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	4.0		4.0		4.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	P_{n} to $\overline{\mathrm{CP}}$	4.0		4.0		4.0		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW	8.0		8.0		8.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	M to $\overline{\mathrm{CP}}$	8.0		8.0		8.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0		2.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	M to $\overline{\mathrm{CP}}$	2.0		2.0		2.0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time, LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	10.0		12.0		10.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH $\overline{\mathrm{CS}}$ to $\overline{\mathrm{CP}}$	10.0		10.0		10.0		
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\mathrm{CP}}$ Pulse Width	4.0		5.0		4.0		ns
${ }^{\text {w }}$ (L)	HIGH or LOW	6.0		9.0		6.0		

Physical Dimensions inches (millimeters) unless otherwise noted

