

April 1988 Revised August 1999

74F563

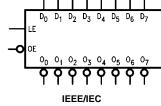
Octal D-Type Latch with 3-STATE Outputs

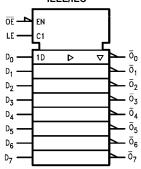
General Description

The 74F563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

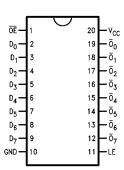
This device is functionally identical to the 74F573, but has inverted outputs.

Features


- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 74F573


Ordering Code:

Order NumberPackage Number74F563SCM20B			Package Description
			20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
	74F563SJ M20D		20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F563PC N20A			20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

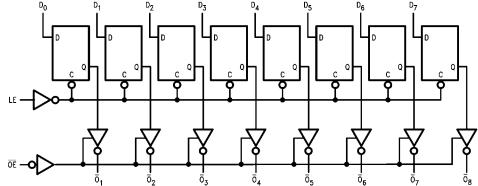
Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 μA/-0.6 mA		
ŌĒ	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/-0.6 mA		
$\overline{O}_0 - \overline{O}_7$	3-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description

The 74F563 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the $\mathbf{D}_{\mathbf{n}}$ inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When $\overline{\text{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Function Table


I	nputs		Internal	Output	Function		
OE LE D		Q	0				
Н	Χ	Χ	Х	Z	High Z		
Н	Н	L	Н	Z	High Z		
Н	Н	Н	L	Z	High Z		
Н	L	Χ	NC	Z	Latched		
L	Н	L	Н	Н	Transparent		
L	Н	Н	L	L	Transparent		
L	L	Х	NC	NC	Latched		

H = HIGH Voltage Leve

L = LOW Voltage Level X = Immaterial

Z = High ImpedanceNC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \end{array}$

 $\begin{array}{lll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \\ \mbox{Input Voltage (Note 2)} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

-30 mA to +5.0 mA

Input Current (Note 2)
Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5\mbox{V to +5.5V} \end{array}$

Current Applied to Output

in LOW State (Max) $\qquad \qquad \text{twice the rated I}_{OL} \, (\text{mA})$

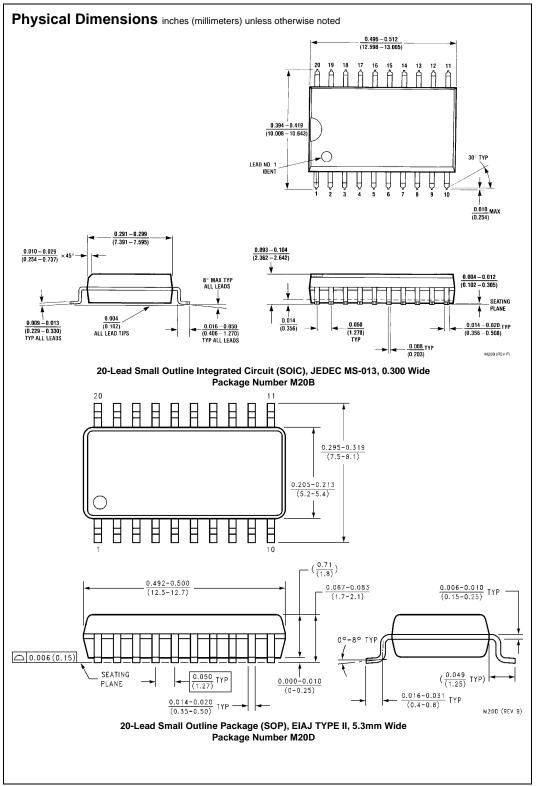
Recommended Operating Conditions

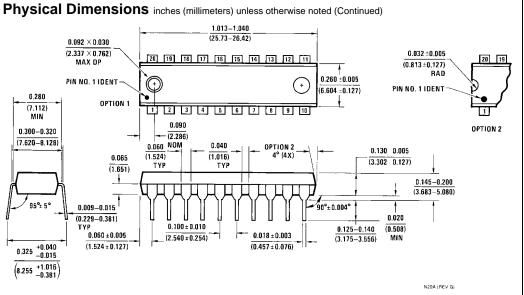
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA}$
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
		$5\% V_{CC}$	2.7				IVIIII	$I_{OH} = -1 \text{ mA}$
		$5\% V_{CC}$	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
	Voltage	10% VCC			0.5	V	IVIII	1 _{OL} = 24 IIIA
I _{IH}	Input HIGH				5.0	μА	Max	V _{IN} = 2.7V
	Current				3.0	μΛ	IVIAA	V IN - 2.7 V
I _{BVI}	Input HIGH Current				7.0	μА	Max	V _{IN} = 7.0V
	Breakdown Test			7.0	μΛ	IVIGA	VIN = 7.0V	
I _{CEX}	Output HIGH				50	μА	Max	V _{OUT} = V _{CC}
	Leakage Current			30	μΑ	IVIAX	VOUT = VCC	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.73			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μΛ	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
l _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCL}	Power Supply Current			40	61	mA	Max	$V_O = LOW$
I _{CCZ}	Power Supply Current			40	61	mA	Max	V _O = HIGH Z


AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	3.5		8.5	3.0	10.5	3.0	9.5		
t _{PHL}	D_n to \overline{O}_n	2.5		6.5	2.0	7.5	2.0	7.0	ns	
t _{PLH}	Propagation Delay	4.5		9.5	4.0	11.0	4.0	10.5		
t _{PHL}	LE to \overline{O}_n	3.0		7.0	2.5	7.5	2.5	7.0	ns	
t _{PZH}	Output Enable Time	2.0		7.5	2.0	9.5	2.0	9.0		
t _{PZL}		3.0		8.5	2.5	10.0	1.5	9.5	ns	
t _{PHZ}	Output Disable Time	1.5		5.5	1.5	7.0	1.5	6.5	115	
t _{PLZ}		1.5		5.5	1.5	5.5	1.5	5.5		

AC Operating Requirements

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units	
		Min	Max	Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		2.0		20	
t _S (L)	D _n to LE	2.0		2.0		2.0		ns	
t _H (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0			
t _H (L)	D _n to LE	3.0		3.0		3.0		ns	
t _W (H)	LE Pulse Width, HIGH	4.0		4.0		4.0		ns	

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com