

Logic Symbols

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $I_{I_{H}} / \mathbf{I}_{\mathbf{I L}}$ Output $I_{O H} / \mathbf{I}_{\mathbf{O L}}$
S	Common Select Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{a}}-\mathrm{I}_{0 \mathrm{~d}}$	Data Inputs from Source 0	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{1 \mathrm{a}}-\mathrm{I}_{1 \mathrm{~d}}$	Data Inputs from Source 1	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Register True Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{\mathrm{a}}-\bar{Q}_{\mathrm{d}}$	Register Complementary Outputs (74F398)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 74F398 and 74F399 are high－speed quad 2－port regis－ ters．They select four bits of data from either of two sources （Ports）under control of a common Select input（S）．The selected data is transferred to a 4－bit output register syn－ chronous with the LOW－to－HIGH transition of the Clock input（CP）．The 4－bit D－type output register is fully edge－ triggered．The Data inputs（ $l_{0 x}, l_{1 \mathrm{x}}$ ）and Select input（S） must be stable only a setup time prior to and hold time after the LOW－to－HIGH transition of the Clock input for predict－ able operation．The 74F398 has both Q and $\overline{\mathrm{Q}}$ outputs．

Function Table

Inputs			Outputs	
S	I_{0}	I_{1}	Q	\bar{Q} （Note 1）
1	1	X	L	H
1	h	X	H	L
h	X	1	L	H
h	X	h	H	L
$\mathrm{H}=$ HIGH Voltage Level L＝LOW Voltage Level $h=$ HIGH Voltage Level one setup time prior to the LOW－to－HIGH clock transition				
I＝LOW Voltage Level one setup time prior to the LOW－to－HIGH clock transition $\mathrm{X}=$ Immaterial				
Note 1：74F398 only				

Absolute Maximum Ratings(Note 2)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 3) Input Current (Note 3)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output 3-STATE Output -0.5 V to +5.5 V
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$ ESD Last Passing Voltage
(Min)—74F399
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{H}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{I_{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\overline{\mathrm{V}} \mathrm{ID}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current (74F398)		25	38	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current (74F398)		25	38	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCH	Power Supply Current (74F399)		22	34	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current (74F399)		22	34	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Input Clock Frequency	100	140		100		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	$\begin{gathered} 3.0 \\ (\text { Note 4) } \end{gathered}$	5.7	7.5	3.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	CP to Q or $\overline{\mathrm{Q}}$	3.0	6.8	9.0	3.0	10.0	

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	
$\overline{\mathrm{t}_{\text {S }}(\mathrm{H})}$	Setup Time，HIGH or LOW	3.0		3.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	In_{n} to CP	3.0		3.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time，HIGH or LOW	1.0		1.0		
$\mathrm{th}_{\mathrm{H}}(\mathrm{L})$	I_{n} to CP	1.0		1.0		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time，HIGH or LOW	7.5		8.5		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	S to CP（F398）	7.5		8.5		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time，HIGH or LOW	7.5		8.5		
	S to CP（F399）	7.5		8.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time，HIGH or LOW	0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	S to CP	0		0		
${ }_{\text {t }}(\mathrm{H})$	CP Pulse Width	4.0		4.0		ns
${ }^{\text {tw }}$（L）	HIGH or LOW	5.0		5.0		

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
