# **FEATURES**

- Timing from microseconds to hours
- Operates in both astable and monostable time delay modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005%/°C

# **APPLICATIONS**

- Precision Timing
- Sequential Timing
- Pulse Shaping
- Pulse Generator
- Missing Pulse Detector
- Tone Burst Generator
- Pulse Width Modulation
- Time Delay Generator
- Frequency Division
  Industrial Controls
- Pulse Position Modulation
- Appliance Timing
- Traffic Light Control
- Touch Tone Encoder

#### **GENERAL DESCRIPTION**

The NE/SE556 Dual 555 Monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Timing is provided by an external resistor and capacitor for each timing function; the two timers operate independently of each other sharing only V<sup>+</sup> and ground. The circuits may be triggered and reset on falling waveforms. The output structures will sink or source 150mA.

**Dual Precision Timer** 

# **ABSOLUTE MAXIMUM RATINGS**

| Supply Voltage+18V                                              |
|-----------------------------------------------------------------|
| Power Dissipation* 800mW                                        |
| Operating Temperature Range NE556 0°C to +70°C                  |
| SE55655°C to +125°C                                             |
| Storage Temperature Range65°C to +150°C                         |
| Lead Temperature (Soldering, 60 sec)+300°C                      |
| *Derate linearly at 6.5mV/°C above ambient temperature of 75°C. |



# PIN CONFIGURATION



#### ORDERING INFORMATION

| NE556/D | 0°C to +70°C    | Dice               |
|---------|-----------------|--------------------|
| NE556F  |                 | 14 pin CERDIP      |
| NE556N  |                 | 14 pin plastic DIP |
| SE556/D | -55°C to +125°C | Dice               |
| SE556F* |                 | 14 pin CERDIP      |

\*Add /883B to order number if 883B processing is desired.

### **ELECTRICAL CHARACTERISTICS**

**TEST CONDITIONS:**  $T_A = 25^{\circ} C$ ,  $V^+ = +5V$  to +15 unless otherwise specified.

|                           | 1                                        |            | SE556 | ,    | NE556    |      |            |                |
|---------------------------|------------------------------------------|------------|-------|------|----------|------|------------|----------------|
| PARAMETER                 | TEST CONDITIONS                          | MIN        | TYP   | MAX  | MIN      | TYP  | MAX        | UNITS          |
| Supply Voltage            |                                          | 4.5        |       | 18   | 4.5      |      | 16         | ٧              |
| Supply Current            | V+=5V R <sub>L</sub> = ∞                 |            | 3     | 5    |          | 3    | 6          |                |
| (each device)             | V <sup>+</sup> = 15V R <sub>L</sub> = ∞  |            | 10    | 11   |          | 10   | 14         | mA             |
|                           | Low State, Note 1                        |            |       |      |          |      | 1          |                |
| Timing Error (Monostable) | $R_A = 2K\Omega$ to $100K\Omega$         |            |       |      |          |      |            |                |
| Initial Accuracy          | C = 0.1μF Note 2                         |            | 0.5   | 1.5  |          | 0.75 |            | %              |
| Drift with Temperature    | 1                                        |            | 30    | 100  |          | 50   |            | ppm/°          |
| Drift with Supply         | 1                                        |            | 0.05  | 0.2  |          | 0.1  |            | %/V            |
| Voltage                   |                                          | 1          |       |      | 1        |      |            |                |
| Timing Error (Astable)    | $R_A$ , $R_B = 2K\Omega$ to $100K\Omega$ |            |       |      |          |      |            |                |
| Initial Accuracy          | $\cdot$ C = 0.1 $\mu$ F Note 2           |            | 1.5   |      |          | 2.25 |            | %              |
| Drift with Temperature    | 1 1                                      |            | 90    |      |          | 150  |            | ppm/°          |
| Drift with Supply         | 1                                        |            |       |      |          |      |            |                |
| Voltage                   |                                          |            | 0.15  |      |          | 0.3  | 1          | %/V            |
| Threshold Voltage         |                                          |            | 2/3   |      |          | 2/3  |            | V <sup>+</sup> |
| Threshold Current         | Note 3                                   |            | 30    | 100  |          | 30   | 100        | nA             |
| Trigger Voltage           | V <sup>+</sup> = 15V                     | 4.8        | 5     | 5.2  |          | 5    |            |                |
| ggar vallage              | V <sup>+</sup> = 5V                      | 1.45       | 1.67  | 1.9  |          | 1.67 |            | V              |
| Trigger Current           |                                          |            | 0.5   |      |          | 0.5  |            | μА             |
| Reset Voltage             |                                          | 0.4        | 0.7   | 1.0  | 0.4      | 0.7  | 1.0        | V              |
| Reset Current             |                                          |            | 0.1   |      | 1        | 0.1  |            | mA             |
| Control Voltage Level     | V <sup>+</sup> = 15V                     | 9.6        | 10    | 10.4 | 9.0      | 10   | 11         | 1117           |
| · ·                       | V <sup>+</sup> = 5V                      | 2.9        | 3.33  | 3.8  | 2.6      | 3.33 | 4          |                |
| Output Voltage (low)      | V = 3V<br>V + = 15V                      |            | 0.00  | 0.0  |          | 0.00 | ļ <u>-</u> | -              |
| Sulput Voltage (1011)     | Isink = 10mA                             | İ          | 0.1   | 0.15 |          | 0.1  | .25        |                |
|                           | I <sub>SINK</sub> = 50mA                 |            | 0.4   | 0.5  | t        | 0.4  | .75        |                |
|                           | ISINK = 100mA                            |            | 2.0   | 2.25 |          | 2.0  | 2.75       |                |
|                           | ISINK = 200mA                            |            | 2.5   | 2.20 |          | 2.5  | 2.10       |                |
|                           | V <sup>+</sup> = 5V                      | ļ          | 2.5   |      |          | 2.5  | <u> </u>   |                |
|                           |                                          |            | 0.1   | 0.25 |          |      |            | V              |
|                           | Isink = 8mA                              |            | 0.1   | 0.25 |          | .25  | .35        | V              |
| Outro Allakana (binb)     | ISINK = 5mA                              |            |       |      | <b></b>  | .25  | .35        |                |
| Output Voltage (high)     |                                          |            | 12.5  |      |          | 10.5 |            |                |
|                           | ISOURCE = 200mA                          | <b> </b>   | 12.5  |      |          | 12.5 |            |                |
|                           | V <sup>+</sup> = 15V                     |            |       |      |          |      |            |                |
|                           | ISOURCE = 100mA                          | 40.0       | 10.0  |      | 40.75    | 40.0 | · .        |                |
|                           | V <sup>+</sup> = 15V                     | 13.0       | 13.3  |      | 12.75    | 13.3 |            |                |
|                           | V+=5V                                    | 3.0        | 3.3   |      | 2.75     | 3.3  |            |                |
| Rise Time of Output       |                                          |            | 100   |      |          | 100  | ļ          | ns             |
| Fall Time of Output       |                                          | ļ. <b></b> | 100   | 100  |          | 100  | 100        |                |
| Discharge Leakage Current |                                          |            | 20    | 100  |          | 20   | 100        | nA             |
| Matching Characteristics  |                                          |            |       |      |          |      |            |                |
| (Note 4)                  |                                          | -          |       |      |          |      |            |                |
| Initial Timing Accuracy   |                                          | · .        | 0.05  | 0.1  | <u> </u> | 0.1  | 0.2        | %              |
| Timing Drift with         |                                          | 1          |       | ]    |          |      |            |                |
| Temperature               |                                          |            | ±10   |      |          | ±10  |            | ppm/°          |
| Drift with Supply         |                                          |            |       |      |          |      |            |                |
| Voltage                   | 1                                        |            | 0.1   | 0.2  |          | 0.2  | 0.5        | %/V            |

NOTES: 1. Supply current when output is high is typically 1.0mA less.

2. Tested at  $V^+ = 5V$  and  $V^+ = 15V$ .

<sup>3.</sup> This will determine the maximum value of  $R_A + R_B$  for 15V operation. The maximum total  $R = 20~M\Omega$ .

<sup>4.</sup> Matching characteristics refer to the difference between performance characteristics of each timer section.