

DESCRIPTION

The M5M5165P is a 65,536-bit CMOS static RAM organized as 8,192 words by 8 bits which is fabricated using high-performance double polysilicon CMOS technology. The use of resistive load NMOS cells and CMOS periferals result in a high-density and low-power static RAM. It is ideal for the memory systems which require simple interface.

The stand-by current is low enough for a battery backup application. It is mounted in a standard 28 pin package and configured in an industrial standard $8K \times 8$ -bit pinout.

FEATURES

Туре		Power supply current						
	Access time (max)	Active (max)	Stand-by (max)					
M5M5165P-70	70 ns							
M5M5165P-10	100 ns		2mA					
M5M5165P-12	120 ns							
M5M5165P-15	150 ns	50 m A						
M5M5165P-70L	70 ns	30 114						
M5M5165P-10L	100 ns		100 // A					
M5M5165P-12L	120 ns							
M5M5165P-15L	150ns							

- Single +5V Power Supply
- Fully Static Operation: No Clocks, No Refresh
- Data-Hold on +2V Power Supply
- Directly TTL Compatible: All Inputs and Outputs
- Three-State Outputs: OR-tie Capability
- Simple Memory Expantion by $\overline{S_1}$, S_2
- OE Prevents Data Contention in The I/O Bus
- Common Data I/O
- Pinout Compatible with 64K EPROM M5L2764K
- APPLICATION
- Small Capacity Memory Units.

FUNCTION

The operation mode of the M5M5165P is determined by a

Each mode is summarized in the function inputs S_1 , S_2 , W and OE. Each mode is summarized in the function table. (see next page) A write cycle is excuted whenever the low level \overline{W} overlaps with the low level $\overline{S_1}$ and the high level S_2 . The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of \overline{W} , $\overline{S_1}$ or S_2 , whichever occurs first, requring the set-up and hold time relative to these edge to be maintained. The Output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is excuted by setting \overline{W} at a high level and \overline{OE} at a low level while $\overline{S_1}$ and S_2 are in an active state ($\overline{S_1}$ = L,

M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

$S_2 = H$)

When setting $\overline{S_1}$ at a high level or S_2 at a low level, the chip is in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips and memory expantion by $\overline{S_1}$ and S_2 . The power supply current is reduced as low as the stand-by current which is specified as I_{CC3} or I_{CC4} , and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

FUNCTION TABLE

$\overline{S_1}$	S ₂	W	ŌĒ	Mode	DQ	I _{CC}
х	L	х	X	Non selection	high-impedance	Standby
н	х	х	х	Non selection	high-impedance	Standby
L	н	L	х	Write	D _{IN}	Active
L	н	н	L	Read	D _{OUT}	Active
L	н	н	н		high-impedance	Active

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Personator		Unit		
	Faranteer	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		V
VIL	low input voltage	-0.3		0.8	v
ViH	high input voltage	2.2		V _{CC} +0.3	V

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits .	Unit
Vcc	Supply voltage		-0.3~7	V
Vi	Input voltage	With respect to GND	$-0.3 \sim V_{CC} + 0.3$	v
Vo	Output voltage		0~V _{CC}	v
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature		0~70	°C
Tstg	Storage temperature		-65~150	°C

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5 V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	Test conditions			11-1-1-	
Symbol	Faraneter	Min	Тур	Max [·]	Unit	
ViH	High input voltage		2.2		V _{CC} +0.3	V
VIL	Low input voltage		-0.3		0.8	. V
V _{OH}	High output voltage	I _{OH} =-1mA	2.4			V
Vol	Low output voltage	I _{OL} = 2 mA			0.4	V
Ц _П	Input current	$V_{I}=0 \sim V_{CC}$			±1	μA
lоzн	High level output current in off-state	$\overline{S_1} = V_{IH}$ or $S_2 = V_{IL}$ or $\overline{OE} = V_{IH}$			1	μA
IOZL	Low level output current in off-state	$V_{I/O} = 0 - V_{CC}$			-1	μA
I _{CC1}	Active supply current	$\overline{S_1} \leq 0.2$, $S_2 \geq V_{CC} - 0.2$ Outout open Other inputs ≤ 0.2 or $\geq V_{CC} - 0.2$	-	30	45	mA
I CC2	Active supply current	$\overline{S_1} = V_{IL}$ or $S_2 = V_{IH}$ Output open Other inputs = V_{IH}		35	50	mA
loon	Stand-by supply current	(1) $S_2 \leq 0.2V$, Other inputs = 0 ~ V _{CC} (2) $S_2 \geq V_{CC} = 0.2V$			2(P)	mA
		C $S_1 = V_{CC} = 0.2V$, $S_2 = V_{CC} = 0.2V$, Other inputs = $0 \sim V_{CC}$			100(P-L)	μA
I _{CC4}	Stand-by supply current	$S_2 = V_{IL}, \overline{S_1} = V_{IH}, Other inputs = 0 \sim V_{CC}$			3	mA
Ci	Output capacitance (Ta=25°C)	$V_I = GND$, $V_i = 25 \text{ mVmrs}$, $f = 1 \text{MHz}$			6	pF
Co	Outout capacitance (Ta=25°C)	$V_0=GND, V_0=25 \text{ mVrms}, f=1MHz$			8	pF

Note 1 Direction for current flowing into IC is indicated as positive (no mark) 2 Typical value is V_{CC} =5V, Ta=25°C

MITSUBISHI LSIs

M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

SWITCHING CHARACTERISTICS ($T_a\!=\!0\!\sim\!70^{\circ}C$, $V_{CC}\!=\!5\,V\pm10\,\%$, unless otherwise noted) Read cycle

		M5M M5M	M5M5165P-70 M5M5165P-70L		M5M5165P-10 M5M5165P-10L			M5M5165P-12 M5M5165P-12L			M5M M5M	15165F 15165F		
Symbol	Parameter		Limits			Limits			Limits			Limits	Unit	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
toR	Read cycle time	70			100			120			150			ns
t _{a (A)}	Address access time			70			100			120			150	ns
ta(S1)	Chip select 1 access time			70			100			120			150	ns
t _{a (S2})	Chip select 2 access time			70			100			120			150	ns
t _{a (OE})	Output enable access time			35			50			60			70	ns
tdis(s1)	Output disable time after $\overline{S_1}$ high			30			35			40			50	ns
tdis(S2)	Output disable time after S_2 low			30			35			40			50	ns
tdis(OE)	Output disable time after \overline{OE} high			30			35			40			50	ns
ten(S1)	Output enable time after $\overline{S_1}$ low	5			10			10			10			ns
ten(S2)	Output enable time after S_2 high	5			10			10			10			ns
ten (OE)	Output enable time after \overline{OE} low	5			10			10			10			ns
t _{v (A)}	Data valid time after address change	20			20			20			20			ns

TIMING REQUIREMENTS (Ta = 0 \sim 70°C , V_{CC}=5V \pm 10% , unless otherwise noted) Write cycle

		M5M5165P-70 M5M5165P-70L		M5M5165P-10 M5M5165P-10L			M5M5165P-12 M5M5165P-12L			M5M M5M	5165F 5165F			
Symbol	Parameter		Limits			Limits			Limits			Limits		Unit
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
t _{cw}	Write cycle time	70			100			120			150			ns
t _{w(w)}	Write pulse width	40			60			70			90			ns
t _{su (A)}	Address set up time	.0			0			0			0			ns
t _{su(s)}	Chip select set up time	65			80			85			100			ns
t _{su (D)}	Data set up time	30			35			40			50			ns
t _{h (D)}	Data hold time	5			5			5			5			ns
t _{rec(w)}	Write recovery time	5			5			10			10			ns
tdis(w)	Output disable time after \overline{W} low	0		30			35			40			50	ns
tdis (OE)	Output disable time after \overline{OE} high	0		30			35			40			50	ns
ten(w)	Output enable time after \overline{W} high	5			10			10			10			ns
ten (OE)	Output enable time after OE low	5			10			10			10			ns

M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

TIMING DIAGRAM Read cycle

W="H" level

Write cycle (WE control)

MITSUBISHI LSIs

M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

Write cycle (S control)

-

Note 4: Test condition

Input pulse level: 0.6~2.4V

Input pulse rise, fall time: 10ns

- Load: 1 TTL, CL = 100pF (P-15, P-12, P-10, P-15L, P-12L, P-10L) C_L=30pF (P-70, P-70L)
- Conditions of assessment: 1.5V
- 5: Hatching indicates the state is don't care.
- 6: Writing is executed while S_2 high overlaps $\overline{\mathsf{S}_1}$ and $\overline{\mathsf{W}}$ low.
- 7: If \overline{W} goes low simultaneously with or prior to $\overline{S_1}$ low or S_2 high, the output remains in the highimpedance state.
- 8: Don't apply inverted phase signal externally when DQ pin is in output mode.

M5M5165P-70, -10, -12, -15, -70L, -10L, -12L, -15L

65536-BIT (8192 WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Baramatar	Test conditions		Linit		
Symbol		-	Min	Тур	Max	Unit
V _{CC(PD)}	Power down supply voltage		2			v
$V_{I}(\overline{S_1})$	Chip select input $\overline{S_1}$	$2.2V \leq V_{CC(PD)}$	2.2			v
		2V≦V _{CC(PD)} ≦2.2V		VCC(PD)		v
N. (-)	Chip select input S_2	4.5V≦V _{CC(PD)}			0.8	V
VI (S ₂)		V _{CC (PD})<4.5V			0.2	V
ICC(PD)	Power down supply current	$V_{2} = -2V_{2}$ Other inputs $= -2V_{2}$			2(P)	mA
	rower down suppry current	$v_{CC} = 3v$, other inputs = $3v$			50(P-L)	μA

Note 3: When S₁ is operated at 2.2V (V_{IH} min) and the supply voltage is between 4.5V and 2.4V, supply current is defined as I_{CC4}.

TIMING REQUIREMENTS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Test conditions		11-14		
		rest conditions	Min	Тур	Max	Unit
t _{su (PD)}	Power down setup time		0			ns
t _{rec(PD)}	Power down recovery time		t _{CR}			ns

POWER DOWN CHARACTERISTICS

$\overline{S_1}$ control

S₂ control

