

4096 x 1 Static R/W RAM

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
- 35 ns
- Low active power
 - 690 mW (commercial)
 - 770 mW (military)
- Low standby power
 - 140 mW
- TTL-compatible imputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY2147 is a high-performance CMOS static RAM organized as 4096 by 1 bit. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY2147 has an automatic power-down feature, reducing the power consumption by 80% when deselected.

Writing to the device is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A₀ through A₁₁).

Reading the device is accomplished by taking the chip enable (\overline{CE}) LOW while write enable (\overline{WE}) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output (DO) pin.

The output pin stays in high-impedance state when chip enable (\overline{CE}) is HIGH or write enable (\overline{WE}) is LOW.

Selection Guide (For higher performance and lower power, refer to CY7C147 data sheet.)

		2147-35	2147-45	2147-55
Maximum Access Time (ns)		35	45	55
MaximumOperating Current(mA)	Commerical	125	125	125
	Military		140	140
Maximum Standby Current(mA)	Commerical	25	25	25
	Military		25	25

Maximum Ratings (Above which the useful life may be impaired not tested.)	ed. Foruserguidelines,
Storage Temperature	-65°C to $+150$ °C
Ambient Temperature with Power Applied	– 55°C to + 125°C
S 1. V-14 to Cound Potential	-0.5V to + 7.0V

Supply Voltage to Ground Potential -0.5V to +7.0VDC Voltage Applied to Outputs in High Z State - 0.5V to + 7.0V

DC Input Voltage - 3.0V to + 7.0V

Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to + 70°C	5V ± 10%
Military ^[1]	- 55°C to + 125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[2]

				21	47	
Parameters	Description	Test Conditions		Min.	Max.	Units
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 12.0 \text{ mA}$			0.4	V
V _{IH}	Input HIGH Voltage			2.0	v_{cc}	V
V _{IL}	Input LOW Voltage			-3.0	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-10	+10	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-50	+50	μA
I _{OS}	Output Short Circuit Current ^[3]	$V_{CC} = Max., V_{OUT} = GND$			-350	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA$	Com'l		125	mA
~~~			Mil		140	
I _{SB}	Automatic CE	$Max. V_{CC}, \overline{CE} \ge V_{IH}$	Com'l		25	mA
-2B	Power-DownCurrent ^[4]	]	Mil		25	

#### Canacitance[5]

Parameters	Description	Test Conditions	Max.	Units
C _{IN}	InputCapacitance	$T_A = 25^{\circ} \text{C, f} = 1 \text{ MHz,}$	8	pF
COUT	OutputCapacitance	$V_{\rm CC} = 5.0 \text{V}$	8	pF

#### Notes:

- TA is the "instant on" case temperature.
- See the last page of this specification for Group A subgroup testing information.
- Duration of the short circuit should not exceed 30 seconds.
- A pull-up resistor to  $V_{CC}$  on the  $\overline{CE}$  input is required to keep the device deselected during  $V_{CC}$  power-up, otherwise  $I_{SB}$  will exceed values given.
- Tested initially and after any design or process changes that may affect these parameters.

# AC Test Loads and Waveforms







#### Switching Characteristics Over the Operating Range [2,6]

		214	7-35	214	7-45	2147	7-55	
Parameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
READ CYCL	Æ					.I.		•
t _{RC}	Read Cycle Time	35		45		55		ns
t _{AA}	Address to Data Valid		35		45		55	ns
t _{OHA}	Output Hold from Address Change	5		5		5		ns
t _{ACE}	CE LOW to Data Valid		35		45		55	ns
t _{LZCE}	CE LOW to Low Z ^[7]	5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		30		30		30	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
tPD	CE HIGH to Power-Down		20		20		20	ns
WRITE CYC	LE ^[9]				L .	·	1	
twc	Write Cycle Time	35		45		55		ns
t _{SCE}	CE LOW to Write End	35		45		45		ns
t _{AW}	Address Set-Up to Write End	35		45		45		ns
t _{HA}	Address Hold from Write End	0		0		10		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	20		25		25		ns
t _{SD}	Data Set-Up to Write End	20		25		25		ns
t _{HD}	Data Hold from Write End	10		10		10		ns
t _{HZWE}	WE LOW to High Z ^[7]		20		25	<b>†</b>	25	ns
t _{LZWE}	WE HIGH to Low Z ^[7, 8]	0		0		0		ns

#### Notes:

- Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
- t_{HZCE} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
- 9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and

either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

- 10. WE is HIGH for read cycle.
- 11. Device is continuously selected,  $\overline{\text{CE}} = V_{\text{IL}}$ .
- 12. Address valid prior to or coincident with  $\overline{CE}$  transition low.
- 13. If  $\overline{\text{CE}}$  goes HIGH simultaneously with  $\overline{\text{WE}}$  HIGH, the output remains in a high-impedance state.

### **Switching Waveforms**

## Read Cycle No. 1[10,11]



2147-5



### Switching Waveforms (continued)









# **Ordering Information**

Speed (ns)	Ordering Code	Package Type	Operating Range
35	CY2147-35PC	Р3	Commercial
	CY2147-35DC	D4	
45	CY2147-45PC	Р3	Commercial
	CY2147-45DC	D4	
	CY2147-45DMB	D4	Military
55	CY2147-55PC	P3	Commercial
	CY2147-55DC	D4	
2	CY2147-55DMB	D4	Military

# MILITARY SPECIFICATIONS Group A Subgroup Testing

# **DC** Characteristics

Parameters	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
$V_{IH}$	1, 2, 3
V _{IL} Max.	1, 2, 3
$I_{IX}$	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3

# **Switching Characteristics**

Parameters	Subgroups
READ CYCLE	•
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Document #: 38-00023-B