FAIRCHILD

SEMICONDUCTOR

MM74C74 Dual D-Type Flip-Flop

General Description

The MM74C74 dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. Each flip-flop has independent data, preset, clear and clock inputs and Q and Q outputs. The logic level present at the data input is transferred to the output during the positive going transition of the clock pulse. Preset or clear is independent of the clock and accomplished by a low level at the preset or clear input.

Features

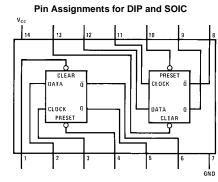
- Supply voltage range: 3V to 15V
- Tenth power TTL compatible: Drive 2 LPT²L loads

October 1987 Revised January 1999

MM74C74 Dual D-Type Flip-Flop

- High noise immunity: 0.45 V_{CC} (typ.)
- Low power: 50 nW (typ.)
- Medium speed operation: 10 MHz (typ.) with 10V supply

Applications


- Automotive
- Data terminals
- Instrumentation
- Medical electronics
- Alarm system
- Industrial electronics
- Remote metering
- Computers

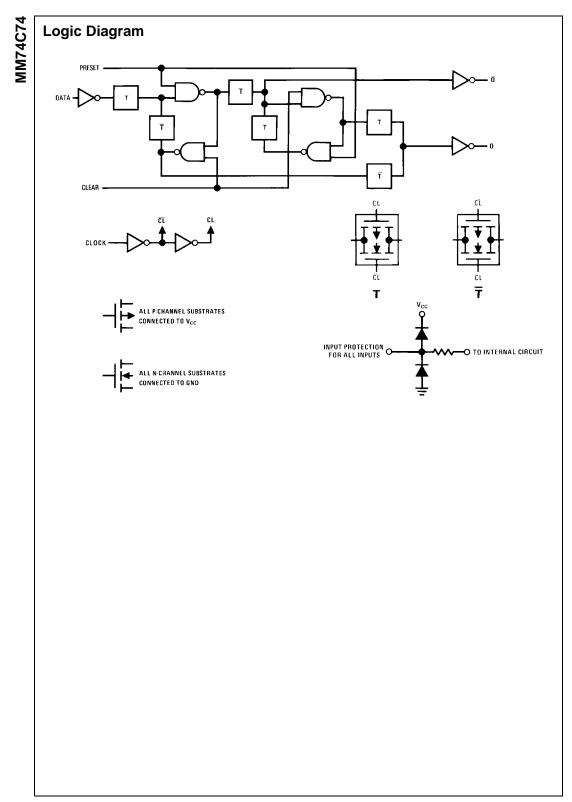
Ordering Code:

Order Number	Package Number	Package Description
MM74C74M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C74N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Note: A logic "0" on clear sets Q to logic "0". A logic "0" on preset sets Q to logic "1". **Top View**


Truth Table

Preset	Clear	Q _n	Q _n
0	0	0	0
0	1	1	0
1	0	0	1
1	1	Q _n (Note 1)	\overline{Q}_n (Note 1)

Note 1: No change in output from previous state.

© 1999 Fairchild Semiconductor Corporation DS005885.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin (Note 2)	–0.3V to V _{CC} +0.3V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature	
(Soldering, 10 seconds)	260°C
Operating V _{CC} Range	3V to 15V
V _{CC} (Max)	18V

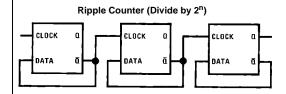
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

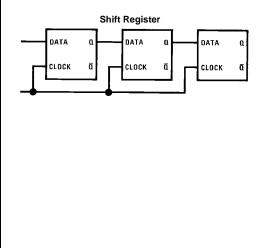
DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоз					1
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	80			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$	4.5			V
		$V_{CC} = 10V$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$			0.5	V
		$V_{CC} = 10V$			1.0	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V$			1.0	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V$	-1.0			μA
Icc	Supply Current	$V_{CC} = 15V$		0.05	60	μA
CMOS/LPT	TL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} -1.5			
VIN(0)	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75 V$, $I_D = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75 V$, $I_D = 360 \ \mu A$			0.4	V
	RIVE (See Family Characteristics	Data Sheet)				
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	-1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	-8.0			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	1.75			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	8.0			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				

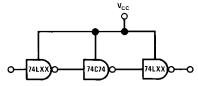
MM74C74

www.fairchildsemi.com

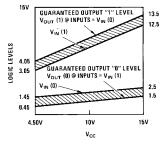

	= 50 pF, unless otherwise noted				r	
Symbol	Parameter	Conditions	Min	Тур	Max	Uni
C _{IN}	Input Capacitance	Any Input (Note 4)		5.0		pF
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns
	Logical "0" t _{pd0} or Logical "1"	$V_{CC} = 10V$		70	110	ns
	t_{pd1} from Clock to Q or \overline{Q}					
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns
	Logical "0" from Preset or Clear	$V_{CC} = 10V$		70	110	ns
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		250	400	ns
	Logical "1" from Preset or Clear	$V_{CC} = 10V$		100	150	ns
t _{S0} , t _{S1}	Time Prior to Clock Pulse that	$V_{CC} = 5V$	100	50		ns
	Data Must be Present tSETUP	$V_{CC} = 10V$	40	20		ns
t _{H0} , t _{H1}	Time after Clock Pulse that	$V_{CC} = 5V$		-20	0	ns
	Data Must be Held	$V_{CC} = 10V$		-8.0	0	ns
t _{PW1}	Minimum Clock Pulse	$V_{CC} = 5V$		100	250	ns
	Width $(t_{WL} = t_{WH})$	$V_{CC} = 10V$		40	100	ns
t _{PW2}	Minimum Preset and	$V_{CC} = 5V$		100	160	ns
	Clear Pulse Width	$V_{CC} = 10V$		40	70	ns
t _r , t _f	Maximum Clock Rise	$V_{CC} = 5V$	15.0			μs
	and Fall Time	$V_{CC} = 10V$	5.0			μs
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	3.5		MH
		$V_{CC} = 10V$	5.0	8.0		MH
C _{PD}	Power Dissipation Capacitance	(Note 5)		40		pF

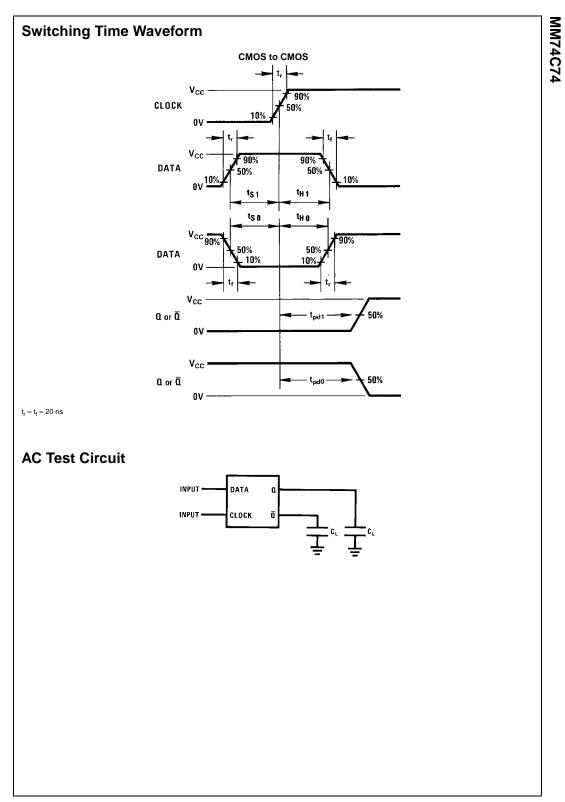

Note 3: AC Parameters are guaranteed by DC correlated testing.

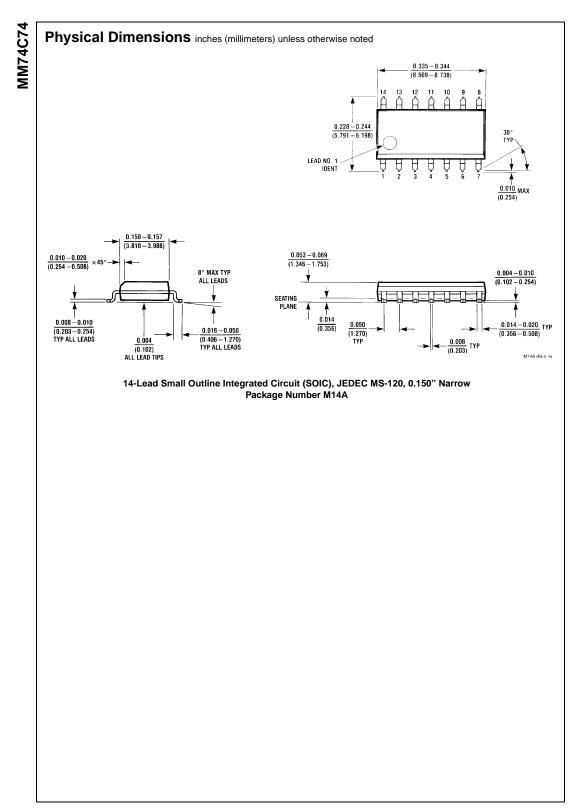
Note 4: Capacitance is guaranteed by periodic testing.

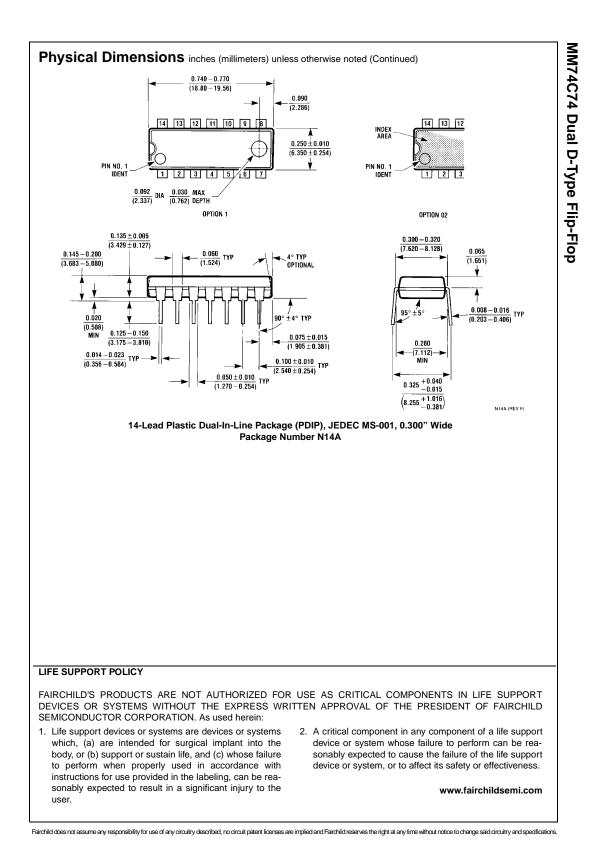

Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note— AN-90.

Typical Applications








Guaranteed Noise Margin as a Function of V_{CC}

www.fairchildsemi.com

