MM74C175 Quad D-Type Flip-Flop

SEMICONDUCTOR IM

MM74C175 Quad D-Type Flip-Flop

General Description

The MM74C175 consists of four positive-edge triggered Dtype flip-flops implemented with monolithic CMOS technology. Both are true and complemented outputs from each flip-flop are externally available. All four flip-flops are controlled by a common clock and a common clear. Information at the D-type inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative pulse at Clear input, clears all four Q outputs to logical "0" and Q's to logical "1".

All inputs are protected from static discharge by diode clamps to V_{CC} and GND.

Features

- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1.0V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L

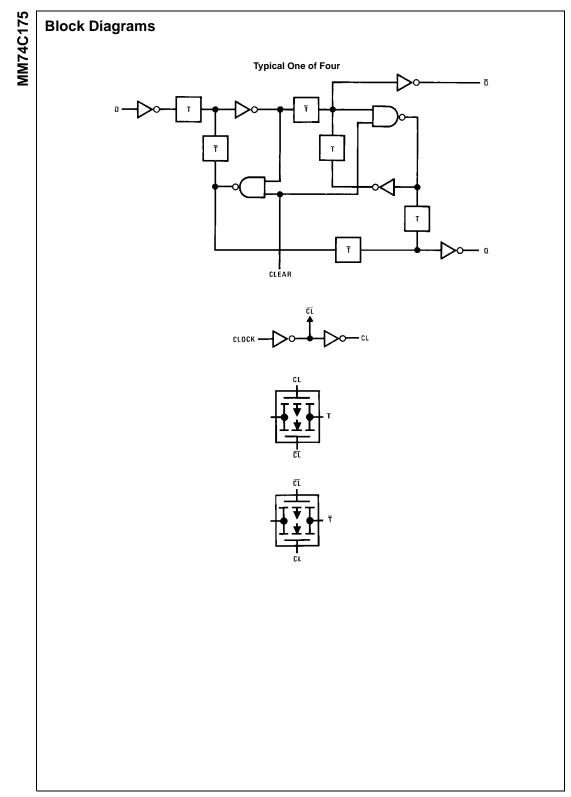
Ordering Code:

Order Number	Package Number	Package Description
MM74C175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Truth Table

Each Flip-Flop


Inputs			Outputs		
Clear	Clock	D	Q	Q	
L	х	Х	L	Н	
н	Ŷ	н	н	L	
н	\uparrow	L	L	н	
н	н	х	NC	NC	
н	L	х	NC	NC	

H = HIGH Level L = LOW Level

X = Irrelevant

 \uparrow = Transition from LOW-to-HIGH level NC = No Change

© 2004 Fairchild Semiconductor Corporation DS005900

Absolute Maximum Ratings(Note 1)

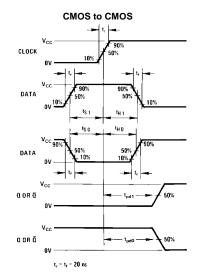
Voltage at Any Pin	–0.3V to V _{CC} +0.3V
Operating Temperature Range	–55°C to +125°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C

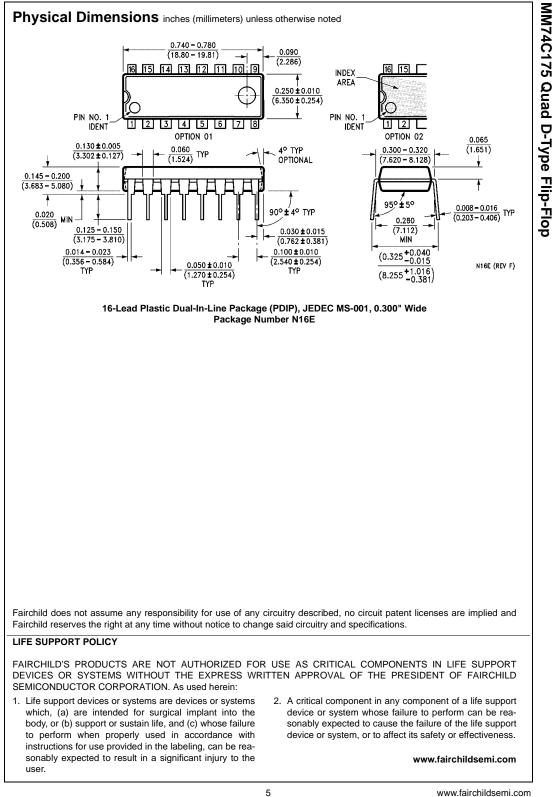
MM74C175

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS		-++	+		*
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5		,	v
		$V_{CC} = 10V$, $I_{O} = -10 \ \mu A$	9.0			v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \ \mu A$			0.5	v
		$V_{CC}=10V,\ I_O=10\ \mu A$			1.0	v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	V _{CC} = 15V	1 1	0.05	300	μΑ
CMOS/LPT	TL INTERFACE			<u> </u>		<u> </u>
V _{IN(1)}	Logical "1" Input Voltage	74C, $V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	74C, $V_{CC} = 4.75V$	1 1		0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = 360 \ \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	S Data Sheet) (Short Circuit Current)		<u> </u>		
ISOURCE	Output Source Current	$V_{CC} = 5V, T_A = 25^{\circ}C,$	-1.75	-3.3		mA
	(P-Channel)	$V_{OUT} = 0V$	-1.75	-3.5		1115
ISOURCE	Output Source Current	$V_{CC} = 10V, T_A = 25^{\circ}C,$	-8.0	-15		mA
	(P-Channel)	$V_{OUT} = 0V$	-0.0	-15		110
I _{SINK}	Output Sink Current	$V_{CC} = 5V, T_A = 25^{\circ}C,$	1.75	3.6		mA
	(N-Channel)	$V_{OUT} = V_{CC}$	1.75	3.0		1114
I _{SINK}	Output Sink Current	$V_{CC}=10V,T_A=25^\circ C,$	8.0	16		mA
	(N-Channel)	$V_{OUT} = V_{CC}$	0.0	10		mA


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay Time to	$V_{CC} = 5V$		190	300	ns	
	a Logical "0" or Logical "1" from Clock to Q or \overline{Q}	$V_{CC} = 10V$		75	110		
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns	
F-	Logical "0" from Clear to Q	$V_{CC} = 10V$		70	110		
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		230	400	ns	
	Logical "1" from Clear to Q	$V_{CC} = 10V$		90	150		
t _S	Time Prior to Clock Pulse that	$V_{CC} = 5V$	100	45		ns	
	Data Must be Present	$V_{CC} = 10V$	40	16			
t _H	Time After Clock Pulse that	$V_{CC} = 5V$	0	-11		ns	
	Data Must be Held	$V_{CC} = 10V$	0	-4			
t _W	Minimum Clock Pulse Width	$V_{CC} = 5.0V$		130	250	ns	
		$V_{CC} = 10V$		45	100		
t _W	Minimum Clear Pulse Width	$V_{CC} = 5.0V$		120	250	ns	
		$V_{CC} = 10V$		45	100		
t _r	Maximum Clock Rise Time	$V_{CC} = 5V$	15	450		μs	
		$V_{CC} = 10V$	5.0	125			
t _f	Maximum Clock Fall Time	$V_{CC} = 5V$	15	50		μs	
		$V_{CC} = 10V$	5.0	50			
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	3.5		MHz	
		$V_{CC} = 10V$	5.0	10			
C _{IN}	Input Capacitance	Clear Input (Note 3)		10		pF	
		Any Other Input		5.0		pi	
C _{PD}	Power Dissipation Capacitance	Per Package (Note 4)		130		pF	


Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.

Switching Time Waveforms

