

Data sheet acquired from Harris Semiconductor SCHS068A – Revised March 2002

CD4503B Types

CMOS Hex Buffer

High-Voltage Types (20-Volt Rating) 3-State Non-Inverting Type


■CD4503B is a hex noninverting buffer with 3-state outputs having high sink- and source-current capability. Two disable controls are provided, one of which controls four buffers and the other controls the remaining two buffers. The CD4503B types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

Features:

- 1 TTL-load output drive capability
- 2 output disable controls
- 3-state outputs
- Pin compatible with industry types MM80C97, MC14503, and 340097
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- 3-state hex buffer for interfacing IC's with data buses
- CMOS to TTL hex buffer

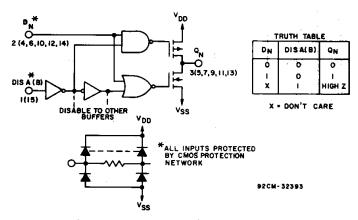


Fig. 1—Logic diagram of 1 to 6 identical buffers.

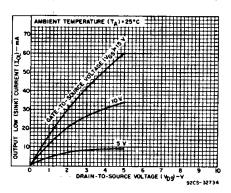


Fig. 2—Typical n-channel output low (sink) current characteristics.

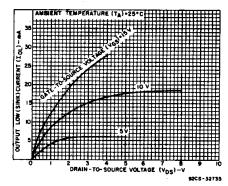
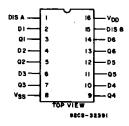



Fig. 3—Minimum n-channel output low (sink) current characteristics.

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	•
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to Vnn +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For TA = -55°C to +100°C	500mW
For T _A = +100°C to +125°C	t 12mW/°C to 200mW
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s may	+26500

CD4503B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)						726	
	Vo	Vin	VDD					T			
	(x)	(V)	(8)	—55	-40	+ 85	+ 125	Min.	+ 25 Typ.	Max.	S
Quiescent	_	0,5	5	1	1	30	30	_	0.02	1	
Device		0,10	10	2	2	60	60	_	0.02	2	
Current,	_	0,15	15	4	4	120	120		0.02	4	μΑ
IDD Max.	_	0,20	20	20	20	600	600		0.04	20	
Output				Ĭ			-				
Low	0.4	0	5	2.6	2.5	1.4	1.3	2.1	2.3	. —	
(Sink)	0.5	0	10	6.5	6.4	3.9	3.8	5.5	6.2		·
Current	1.5	0	15	19.2	18.9	11.4	11.2	16.1	23	_	
IOL Min.				[1	l			ļ		
Output	4.6	5	5	10	1.40	0.7			4.0		
High	2.5	5	5	-1.2 5.8	-1.16		-0.7	-1.02			m/
(Source)	9.5	10		3.0	-5.7 -3	-3.4	-3	−4.8	<u>-6.1</u>		
Current,		15	10 15	8.2	—3 —8	<u>-1.9</u>	-1.8 -4.8	-2.6	-3.7		
IOH Min.	13.5	15	15	0.2	-0	-4.9	-4.8	—6.8	—14.1		
Output	· · · · · ·				:						
Voltage:	_ ^	0,5	5		0.0	05			١٥	0.05	
Low-				0.00							
Level,		0,10	10		0.05			_	ا ا	0.05	
VOL Max.	٠٠ ـــــــــــــــــــــــــــــــــــ	0,15	15	0.05				0	0.05		
Output							-		-	0.00	٧
Voltage:		0,5	5		4.9	95		4.95	5	_	
High-				4.95							
Level,	_	0,10	10		9.95			9.95	10		
VOH Min.	_	0,15	15					14.95	15		
Input Low	0.5,4.5		5			5		-	- 13	1.5	
Voltage,	1,9	_	10		3		1 2	ΗΞ-		3	
VII Max.	1.5,13.5		15					= -		-4	
Input	1.0,10.0			 		<u> </u>	,	=-		-	
High	0.5,4.5		5	3.5			3.5			٧	
Voltage,	1,9		10		7	-		7			
Vill Min.	1.5,13.5		15	11			11	-			
Input	1.5, 15.5		- 13		· '	<u> </u>	_	''	=	_	<u> </u>
Current		0,18	18	± 0.1	± 0.1	±1	۱.,		± 10 ⁻⁵	المدا	
IN Max.		0,16	10	= 0.1	± U. I	=	±1	-	= '''	± 0.1	
3-State	<u> </u>	-		 	ļ	 	-			\vdash	
						1					μΑ
Output	امیما	0.40	40		٠ ا				امحما	اريا	
Leakage	0,18	0,18	18	±0.4	± 0.4	± 12	± 12	-	± 10 ⁻⁴	± 0.4	
Current,							[
OUT							1				7
Max.									j		

For maximum reliability, nominal operating conditions should be selected that operation is always within the following ranges:

	-	•	200
CHARACTERISTIC -	LIA	HAUTE	
	Min.	Max.	UNITS
Supply-Voltage Range (For TA = Full Package-Temperature Range)	3	18	٧

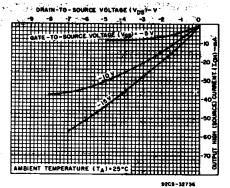


Fig. 4—Typical p-channel output high (source) current characteristics.

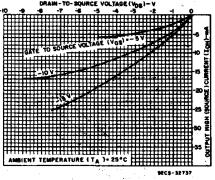


Fig. 5—Minimum p-channel output high (source) current characteristics.

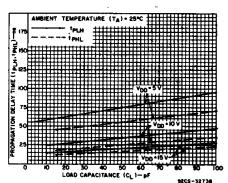


Fig. 6—Typical propagation delay time as a function of load capacitance.

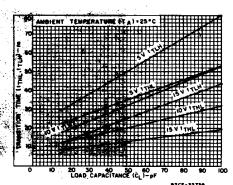


Fig. 7—Typical transition time as a function of load capacitance.

CD4503B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at $T_A=25^{\circ}C$; input t_f , $t_f=20$ ns, $C_L=50$ pF, $R_L=200$ k Ω unless otherwise specified.

CHARACTERISTIC	V _{DD}	LIN		
CHARACTERISTIC	(v)	Typ.	Max.	UNITS
Propagation Delay Time:	5	75	150	
Low-to-High, tpLH	10	35	70	ns
	15	25	50	
High-to-Low, tpHL	5	55	110	
	10	25	50	ns
	15	17	35	
Transition Time:	5	50	90	
Low-to-High, t _{TLH}	10	30	45	ns
	15	25	35	
High-to-Low, t _{THL}	5	35	70	
	10	20	40	ns
	15	13	25	
3-State Propagation Delay Time: R _L = 1 kΩ	5	70	140	
tPHZ, tPZH	10	30	60	ns
	15	25	50	
tPZL, tPLZ	5	90	180	
	10	40	80	ns
	15	35	70	ŀ

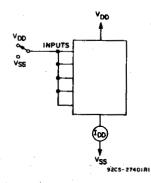
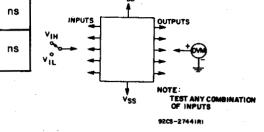



Fig. 10-Quiescent-device-current test circuit.

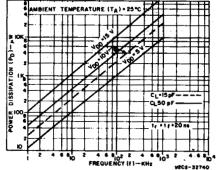


Fig. 8—Typical power dissipation as a function of frequency.

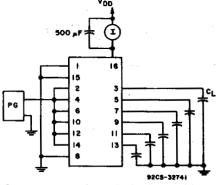
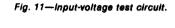



Fig. 9—Dynamic power dissipation test circuit.

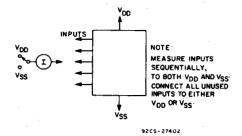
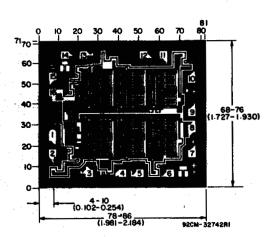



Fig. 12-Input current test circuit.

Dimensions and pad layout for CD4503BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch):

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated